A bioluminescent general protease assay was developed using a combination of five luminogenic peptide substrates. The peptide-conjugated luciferin substrates were combined with luciferase to form a homogeneous, coupled-enzyme assay. This single-reagent format minimized backgrounds, gave stable signals, and reached peak sensitivity within 30 min.
View Article and Find Full Text PDFThis article describes a novel two-step homogeneous bioluminescent assay for monoamine oxidase (MAO) that is simple, sensitive, and amenable to high-throughput screening. In the first step, MAO reacts with an aminopropylether analog of methyl ester luciferin. In the second step, a luciferin detection reagent inactivates MAO and converts the product of the first step into a luminescent signal.
View Article and Find Full Text PDFNew highly sensitive latent bioluminescent luciferin substrates were designed and synthesized for monitoring mammalian glutathione S-transferase (GST) and Schistosoma japonicum enzyme activities.
View Article and Find Full Text PDFLuminogenic cytochrome P450 (CYP) assays couple CYP enzyme activity to firefly luciferase luminescence in a technology called P450-Glo(TM) (Promega). Luminogenic substrates are used in assays of human CYP1A1, -1A2, -1B1, -2C8, -2C9, -2C19, -2D6, -2J2, -3A4, -3A7, -4A11, -4F3B, -4F12 and -19. The assays detect dose-dependent CYP inhibition by test compounds against recombinant CYP enzymes or liver microsomes.
View Article and Find Full Text PDFNovel bioluminogenic substrates were designed for probing monoamine oxidase (MAO) activity based on a simple and effective beta-elimination strategy. By modifying the amino group and the central core of luciferin derivatives, we have developed a series of substrates useful for assays of MAO A or B, or both. One of these substrates, exhibiting low Km values and high signal-to-background ratios with both isozymes, was shown to accurately measure the Ki values of known MAO inhibitors.
View Article and Find Full Text PDF