Environmental conditions like temperature and photoperiod can strongly shape organisms' growth and development. For many ectotherms with complex life cycles, global change will cause their offspring to experience warmer conditions and earlier-season photoperiods, two variables that can induce conflicting responses. We experimentally manipulated photoperiod and temperature during gray treefrog () larval development to examine effects at metamorphosis and during short (10-day) and long (56-day) periods post-metamorphosis.
View Article and Find Full Text PDFOrganisms that shift their phenologies in response to global warming will experience novel photic environments, as photoperiod (daylength) continues to follow the same annual cycle. How different organisms respond to novel photoperiods could result in phenological mismatches and altered interspecific interactions. We conducted an outdoor mesocosm experiment exposing green frog () larvae, gray treefrog () larvae, phytoplankton, periphyton, and zooplankton to a three-month shift in photoperiod: an early-season photoperiod (simulating April) and a late-season photoperiod (simulating July).
View Article and Find Full Text PDF