J Nanosci Nanotechnol
January 2011
Environmental, health, and safety (EHS) concerns are receiving considerable attention in nanoscience and nanotechnology (nano) research and development (R&D). Policymakers and others have urged that research on nano's EHS implications be developed alongside scientific research in the nano domain rather than subsequent to applications. This concurrent perspective suggests the importance of early understanding and measurement of the diffusion of nano EHS research.
View Article and Find Full Text PDFFullerenes are sphere-like molecules with unique physico-chemical properties, which render them of particular interest in biomedical research, consumer products and industrial applications. Human and environmental exposure to fullerenes is not a new phenomenon, due to a long history of hydrocarbon-combustion sources, and will only increase in the future, as incorporation of fullerenes into consumer products becomes more widespread for use as anti-aging, anti-bacterial or anti-apoptotic agents.An essential step in the determination of biological effects of fullerenes (and their surface-functionalized derivatives) is establishment of exposure-assessment techniques.
View Article and Find Full Text PDFDetection methods are necessary to quantify fullerenes in commercial applications to provide potential exposure levels for future risk assessments of fullerene technologies. The fullerene concentrations of five cosmetic products were evaluated using liquid chromatography with mass spectrometry to separate and specifically detect C60 and C70 from interfering cosmetic substances (e.g.
View Article and Find Full Text PDFNanosilver has become one of the most widely used nanomaterials in consumer products because of its antimicrobial properties. Public concern over the potential adverse effects of nanosilver's environmental release has prompted discussion of federal regulation. In this paper, we assess several classes of consumer products for their silver content and potential to release nanosilver into water, air, or soil.
View Article and Find Full Text PDFThere is a growing concern about the human and environmental health effects of fullerenes (e.g., C(60)) due to their increasing application in research, medicine, and industry.
View Article and Find Full Text PDFEnviron Sci Technol
June 2008
Manufacturers of clothing articles employ nanosilver (n-Ag) as an antimicrobial agent, but the environmental impacts of n-Ag release from commercial products are unknown. The quantity and form of the nanomaterials released from consumer products should be determined to assess the environmental risks of nanotechnology. This paper investigates silver released from commercial clothing (socks) into water, and its fate in wastewater treatment plants (WWTPs).
View Article and Find Full Text PDF