Publications by authors named "Troy A Luster"

Despite advancements in treatment options, the overall cure and survival rates for non-small cell lung cancers (NSCLC) remain low. While small-molecule inhibitors of epigenetic regulators have recently emerged as promising cancer therapeutics, their application in patients with NSCLC is limited. To exploit epigenetic regulators as novel therapeutic targets in NSCLC, we performed pooled epigenome-wide CRISPR knockout screens and and identified the histone chaperone nucleophosmin 1 () as a potential therapeutic target.

View Article and Find Full Text PDF

Despite substantial progress in lung cancer immunotherapy, the overall response rate in patients with -mutant lung adenocarcinoma (LUAD) remains low. Combining standard immunotherapy with adjuvant approaches that enhance adaptive immune responses-such as epigenetic modulation of antitumor immunity-is therefore an attractive strategy. To identify epigenetic regulators of tumor immunity, we constructed an epigenetic-focused single guide RNA library and performed an CRISPR screen in a / LUAD model.

View Article and Find Full Text PDF

We developed a screening assay in which luciferized ID8 expressing OVA was cocultured with transgenic CD8 T cells specifically recognizing the model antigen in an H-2b-restricted manner. The assay was screened with a small-molecule library to identify compounds that inhibit or enhance T cell-mediated killing of tumor cells. Erlotinib, an EGFR inhibitor, was the top compound that enhanced T-cell killing of tumor cells.

View Article and Find Full Text PDF

B lymphocyte stimulator (BLyS) is a member of the TNF superfamily of cytokines. The biological activity of BLyS is mediated by three cell surface receptors: BR3/BAFF-R, TACI and BCMA. The expression of these receptors is highly restricted to B cells, both normal and malignant.

View Article and Find Full Text PDF

As a part of an ongoing assessment of its mechanism of action, we evaluated the in vivo pharmacokinetics, tissue distribution, toxicity and antitumor efficacy of VEGF(121)/rGel, a novel fusion protein. Pharmacokinetic studies showed that VEGF(121)/rGel cleared from the circulation in a biphasic manner with calculated half-lives of 0.3 and 6h for the alpha and beta phases, respectively.

View Article and Find Full Text PDF

Purpose: The vascular targeting antibody bavituximab is being combined with chemotherapy in clinical trials in cancer patients. Bavituximab targets the membrane phospholipid, phosphatidylserine, complexed with beta2-glycoprotein I. Phosphatidylserine is normally intracellular but becomes exposed on the luminal surface of vascular endothelium in tumors.

View Article and Find Full Text PDF

Importance Of The Field: Agents that activate the TNF-related apoptosis-inducing ligand death receptors, TRAIL-R1 and TRAIL-R2, have attracted substantial attention and investment as potential anti-cancer therapies. Preclinical studies of TRAIL-R agonists indicate that they may be efficacious in a wide range of tumor types, especially when combined with chemotherapeutic agents.

Areas Covered In This Review: The rationale for clinical development of TRAIL-R agonists is described, including the basis for combining these agents with other agents that modulate the 'checks and balances' of the apoptotic pathways.

View Article and Find Full Text PDF

Mapatumumab and lexatumumab are fully human monoclonal antibodies that bind and activate human tumor necrosis factor-related apoptosis-inducing ligand receptors 1 and 2, respectively. These antibodies induce apoptosis in various tumor cell types, although the degree of sensitivity can vary from highly sensitive to completely resistant. Importantly, tumor cells that are partially or completely resistant to mapatumumab or lexatumumab can often be sensitized when treated in combination with chemotherapeutic drugs.

View Article and Find Full Text PDF

Purpose: New treatment strategies aimed at damaging tumor vasculature could potentially improve tumor response to radiation therapy. We recently showed that anionic phospholipids, principally phosphatidylserine, are specifically exposed on the luminal surface of tumor blood vessels. Here we tested the hypothesis that radiation therapy can increase phosphatidylserine exposure on lung tumor vasculature, thereby enhancing the antitumor properties of the anti-phosphatidylserine antibody 2aG4.

View Article and Find Full Text PDF

A promising target on tumor vasculature is phosphatidylserine (PS), an anionic phospholipid that resides exclusively on the inner leaflet of the plasma membrane of resting mammalian cells. We have shown previously that PS becomes exposed on the surface of endothelial cells (EC) in solid tumors. To target PS on tumor vasculature, the murine monoclonal antibody 3G4 was developed.

View Article and Find Full Text PDF

Pancreatic cancer continues to have a dismal prognosis and novel therapy is needed. In this study, we evaluate a promising new target for therapy, phosphatidylserine (PS). PS is an anionic phospholipid located normally on the inner leaflet of the plasma membrane in mammalian cells.

View Article and Find Full Text PDF

VEGF(121)/rGel, a fusion protein composed of the growth factor VEGF(121) and the recombinant toxin gelonin (rGel), targets the tumor neovasculature and exerts impressive cytotoxic effects by inhibiting protein synthesis. We evaluated the effect of VEGF(121)/rGel on the growth of metastatic MDA-MB-231 tumor cells in SCID mice. VEGF(121)/rGel treatment reduced surface lung tumor foci by 58% compared to controls (means were 22.

View Article and Find Full Text PDF

Previous studies have shown that there is a strict requirement for fibroblast growth factor-4 (FGF-4) during mammalian embryogenesis, and that FGF-4 expression in embryonic stem (ES) cells and embryonal carcinoma (EC) cells are controlled by a powerful downstream distal enhancer. More recently, mouse ES cells were shown to express significantly more FGF-4 mRNA than human ES cells. In the work reported here, we demonstrate that mouse EC cells also express far more FGF-4 mRNA than human EC cells.

View Article and Find Full Text PDF

The exact mechanisms by which enhancers regulate transcription are currently under investigation. For some genes, activation is accomplished by an intricate array of enhancer cis-regulatory elements that direct the assembly of a gene-specific activation complex known as an "enhanceosome". Transcription of the fibroblast growth factor-4 (FGF-4) gene during early development is controlled by a powerful distal enhancer located 3 kb downstream of the transcription start site within the 3' untranslated region of the gene.

View Article and Find Full Text PDF

The transcription factor B-Myb is a cell-cycle regulated phosphoprotein involved in cell cycle progression through the transcriptional regulation of many genes. In this study, we show that the promoter of the fibroblast growth factor-4 (FGF-4) gene is strongly activated by B-Myb in HeLa cells and it can serve as a novel diagnostic tool for assessing B-Myb activity. Specifically, B-Myb deletion mutants were examined and domains of B-Myb required for activation of the FGF-4 promoter were identified.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: