Publications by authors named "Troy A Johnson"

Inhibition of glutaminase-1 (GLS-1) hampers the proliferation of tumor cells reliant on glutamine. Known glutaminase inhibitors have potential limitations, and in vivo exposures are potentially limited due to poor physicochemical properties. We initiated a GLS-1 inhibitor discovery program focused on optimizing physicochemical and pharmacokinetic properties, and have developed a new selective inhibitor, compound (IPN60090), which is currently in phase 1 clinical trials.

View Article and Find Full Text PDF

Phosphoenolpyruvate carboxykinase (PEPCK) is an essential metabolic enzyme operating in the gluconeogenesis and glyceroneogenesis pathways. Previous work has demonstrated that the enzyme cycles between a catalytically inactive open state and a catalytically active closed state. The transition of the enzyme between these states requires the transition of several active site loops to shift from mobile, disordered structural elements to stable ordered states.

View Article and Find Full Text PDF

LiaR is a 'master regulator' of the cell envelope stress response in enterococci and many other Gram-positive organisms. Mutations to liaR can lead to antibiotic resistance to a variety of antibiotics including the cyclic lipopeptide daptomycin. LiaR is phosphorylated in response to membrane stress to regulate downstream target operons.

View Article and Find Full Text PDF

Phosphoenolpyruvate carboxykinase (PEPCK) is an essential metabolic enzyme operating in the gluconeogenesis and glyceroneogenesis pathways. Recent studies have demonstrated that the enzyme contains a mobile active site lid domain that undergoes a transition between an open, disorded conformation and a closed, ordered conformation as the enzyme progresses through the catalytic cycle. The understanding of how this mobile domain functions in catalysis is incomplete.

View Article and Find Full Text PDF

In the study of rabbit muscle pyruvate kinase (M1-PYK), proline has previously been used as an osmolyte in an attempt to determine a role for preexisting conformational equilibria in allosteric regulation. In this context, osmolytes are small molecules assumed to have no direct interaction with the protein. In contrast to proline's proposed role as an osmolyte, the structure of M1PYK-Mn-pyruvate-proline complex reported herein demonstrates that proline binds specifically to the allosteric site of M1-PYK.

View Article and Find Full Text PDF

Many studies have shown that the dynamic motions of individual protein segments can play an important role in enzyme function. Recent structural studies of the gluconeogenic enzyme phosphoenolpyruvate carboxykinase (PEPCK) demonstrate that PEPCK contains a 10-residue Omega-loop domain that acts as an active site lid. On the basis of these structural studies, we have previously proposed a model for the mechanism of PEPCK catalysis in which the conformation of this mobile lid domain is energetically coupled to ligand binding, resulting in the closed conformation of the lid, necessary for correct substrate positioning, becoming more energetically favorable as ligands associate with the enzyme.

View Article and Find Full Text PDF

We report here the first structure of a member of the immunoglobulin A protease (IgAP) family at 1.75-A resolution. This protease is a founding member of the type V (autotransporter) secretion system and is considered a virulence determinant among the bacteria expressing the enzyme.

View Article and Find Full Text PDF