Publications by authors named "Trottet L"

Introduction: In the midst of the COVID-19 health crisis, the Regional Health Observatories (RHO) and the National Federation of RHOs have chosen to make available their expertise regarding development and production of health indicators to support local and national public policies available, in order to plan for the lifting of population lockdown measures.

Purpose Of Research: To characterize as finely as possible the geographical territories, including overseas territories, using indicators to describe both the population potentially at risk of presenting serious forms of COVID-19 and the demographic and social situations that could favor the circulation of the Sars-Cov-2 virus.

Results: 1,250 profile sheets, one for each public establishment of intermunicipal cooperation in the French departments (excluding Mayotte) presenting 34 indicators were produced.

View Article and Find Full Text PDF

α1-antitrypsin deficiency is characterised by the misfolding and intracellular polymerisation of mutant α1-antitrypsin protein within the endoplasmic reticulum (ER) of hepatocytes. Small molecules that bind and stabilise Z α-antitrypsin were identified via a DNA-encoded library screen. A subsequent structure based optimisation led to a series of highly potent, selective and cellular active α1-antitrypsin correctors.

View Article and Find Full Text PDF

Regulation of proteolytic activity in the skin plays a pivotal role in epidermal homeostasis. This is best exemplified in Netherton syndrome, a severe genetic skin condition caused by loss-of-function mutations in the gene serine protease inhibitor Kazal-type 5 encoding lympho-epithelial Kazal-type-related inhibitor, a serine protease inhibitor that regulates kallikrein (KLK)-related peptidase 5, 7, and 14 activities. KLK5 plays a central role in stratum corneum shedding and inflammatory cell signaling, activates KLK7 and KLK14, and is therefore an optimal therapeutic target.

View Article and Find Full Text PDF

Severe α -antitrypsin deficiency results from the Z allele (Glu342Lys) that causes the accumulation of homopolymers of mutant α -antitrypsin within the endoplasmic reticulum of hepatocytes in association with liver disease. We have used a DNA-encoded chemical library to undertake a high-throughput screen to identify small molecules that bind to, and stabilise Z α -antitrypsin. The lead compound blocks Z α -antitrypsin polymerisation in vitro, reduces intracellular polymerisation and increases the secretion of Z α -antitrypsin threefold in an iPSC model of disease.

View Article and Find Full Text PDF

The connection between Netherton syndrome and overactivation of epidermal/dermal proteases, particularly Kallikrein 5 (KLK5) has been well established and it is expected that a KLK5 inhibitor would improve the dermal barrier and also reduce the pain and itch that afflict Netherton syndrome patients. One of the challenges of covalent protease inhibitors has been achieving selectivity over closely related targets. In this paper we describe the use of structural insight to design and develop a selective and highly potent reversibly covalent KLK5 inhibitor from an initial weakly binding fragment.

View Article and Find Full Text PDF

Fifteen million babies are born preterm every year and a significant number suffer from permanent neurological injuries linked to white matter injury (WMI). A chief cause of preterm birth itself and predictor of the severity of WMI is exposure to maternal-fetal infection-inflammation such as chorioamnionitis. There are no neurotherapeutics for this WMI.

View Article and Find Full Text PDF

Recently, we reported a novel role for KMO in the pathogenesis of acute pancreatitis (AP). A number of inhibitors of kynurenine 3-monooxygenase (KMO) have previously been described as potential treatments for neurodegenerative conditions and particularly for Huntington's disease. However, the inhibitors reported to date have insufficient aqueous solubility relative to their cellular potency to be compatible with the intravenous (iv) dosing route required in AP.

View Article and Find Full Text PDF

A series of potent, competitive and highly selective kynurenine monooxygenase inhibitors have been discovered via a substrate-based approach for the treatment of acute pancreatitis. The lead compound demonstrated good cellular potency and clear pharmacodynamic activity in vivo.

View Article and Find Full Text PDF

Lp-PLA has been explored as a target for a number of inflammation associated diseases, including cardiovascular disease and dementia. This article describes the discovery of a new fragment derived chemotype that interacts with the active site of Lp-PLA. The starting fragment hit was discovered through an X-ray fragment screen and showed no activity in the bioassay (IC > 1 mM).

View Article and Find Full Text PDF

Elevated levels of human lipoprotein-associated phospholipase A2 (Lp-PLA2) are associated with cardiovascular disease and dementia. A fragment screen was conducted against Lp-PLA2 in order to identify novel inhibitors. Multiple fragment hits were observed in different regions of the active site, including some hits that bound in a pocket created by movement of a protein side chain (approximately 13 Å from the catalytic residue Ser273).

View Article and Find Full Text PDF

Acute pancreatitis (AP) is a common and devastating inflammatory condition of the pancreas that is considered to be a paradigm of sterile inflammation leading to systemic multiple organ dysfunction syndrome (MODS) and death. Acute mortality from AP-MODS exceeds 20% (ref. 3), and the lifespans of those who survive the initial episode are typically shorter than those of the general population.

View Article and Find Full Text PDF

Through their function as epigenetic readers of the histone code, the BET family of bromodomain-containing proteins regulate expression of multiple genes of therapeutic relevance, including those involved in tumor cell growth and inflammation. BET bromodomain inhibitors have profound antiproliferative and anti-inflammatory effects which translate into efficacy in oncology and inflammation models, and the first compounds have now progressed into clinical trials. The exciting biology of the BETs has led to great interest in the discovery of novel inhibitor classes.

View Article and Find Full Text PDF

AMP-activated protein kinase (AMPK) is an evolutionarily conserved fuel-sensing enzyme that is activated in shortage of energy and suppressed in its surfeit. AMPK activation stimulates fatty acid oxidation, enhances insulin sensitivity, alleviates hyperglycemia and hyperlipidemia, and inhibits proinflammatory changes. Thus, AMPK is a well-received therapeutic target for type 2 diabetes and other metabolic disorders.

View Article and Find Full Text PDF

Bromodomains (BRDs) are small protein domains found in a variety of proteins that recognize and bind to acetylated histone tails. This binding affects chromatin structure and facilitates the localisation of transcriptional complexes to specific genes, thereby regulating epigenetically controlled processes including gene transcription and mRNA elongation. Inhibitors of the bromodomain and extra-terminal (BET) proteins BRD2-4 and T, which prevent bromodomain binding to acetyl-modified histone tails, have shown therapeutic promise in several diseases.

View Article and Find Full Text PDF

The discovery, synthesis and biological evaluation of a novel series of 7-isoxazoloquinolines is described. Several analogs are shown to increase ApoA1 expression within the nanomolar range in the human hepatic cell line HepG2.

View Article and Find Full Text PDF

Topical aciclovir cream (ACV, Zovirax Cream) containing 40% propylene glycol (PG), the optimum found for skin penetration, is clinically effective in the treatment of recurrent herpes labialis. One hundred and thirty-nine ACV generic creams were analysed and 80% of these contained less than 20% PG. From this, we hypothesised that these generics might be bioinequivalent to the innovator cream.

View Article and Find Full Text PDF

In vitro measurements of skin absorption are an increasingly important aspect of regulatory studies, product support claims, and formulation screening. However, such measurements are significantly affected by skin variability. The purpose of this study was to determine inter- and intralaboratory variation in diffusion cell measurements caused by factors other than skin.

View Article and Find Full Text PDF

We hypothesised that the depletion of propylene glycol from topical formulations applied at clinically relevant doses (approximately mg/cm2) would limit its penetration enhancement effect. The in vitro percutaneous permeation of a model drug-loperamide hydrochloride-in formulations containing propylene glycol was therefore investigated under finite dose conditions. The flux of loperamide and propylene glycol across dermatomed human skin was measured.

View Article and Find Full Text PDF

The aim of this study was to test the hypothesis that the most appropriate model for studying the diffusional release of an active from a topical formulation is one in which the membrane offers minimal resistance to release and involves a receptor phase that presents the least possible interfacial discontinuity. Using ketoprofen as the active, a series of simple gels were prepared consisting of PEG400 thickened with Cabosil M5. Using Franz-type diffusion cells, three different types of membrane (two porous and one non-porous) were compared, as were receptor phases of PEG400 (component of formulation) and PBS.

View Article and Find Full Text PDF

The migration of ketoprofen through a series of simple gels that varied in solvent composition to simulate snapshots of a dynamically drying topical formulation was studied. Firstly, the release rate of ketoprofen was determined from formulations based on Cabosil and PEG 400, the proportion of which was varied to mimic progressively dryer states. Secondly, the apparent permeability of ketoprofen across the corresponding blank Cabosil gels was determined.

View Article and Find Full Text PDF