There is widespread concern about the quality, reproducibility and translatability of studies involving research animals. Although there are a number of reporting guidelines available, there is very little overarching guidance on how to plan animal experiments, despite the fact that this is the logical place to start ensuring quality. In this paper we present the PREPARE guidelines: Planning Research and Experimental Procedures on Animals: Recommendations for Excellence.
View Article and Find Full Text PDFOily fish, a source of long-chain omega-3 polyunsaturated fatty acids (LC n-3 PUFAs), may contain persistent organic pollutants (POPs), including α-hexabromocyclododecane (α-HBCD). In experimental studies, marine LC n-3 PUFAs ameliorate fatty liver development while HBCD exposure was found to cause liver fatty acid (FA) changes. The present study investigated interactions of FAs and α-HBCD in juvenile female BALB/c mice using a factorial design.
View Article and Find Full Text PDFAccumulation of persistent organic pollutants (POPs) has been linked to adipose tissue expansion. As different nutrients modulate adipose tissue development, we investigated the influence of dietary composition on POP accumulation, obesity development and related disorders. Lifespan was determined in mice fed fish-oil-based high fat diets during a long-term feeding trial and accumulation of POPs was measured after 3, 6 and 18months of feeding.
View Article and Find Full Text PDFIntroduction of vegetable ingredients in fish feed has affected the fatty acid composition in farmed Atlantic salmon (Salmo salar L). Here we investigated how changes in fish feed affected the metabolism of mice fed diets containing fillets from such farmed salmon. We demonstrate that replacement of fish oil with rapeseed oil or soybean oil in fish feed had distinct spillover effects in mice fed western diets containing the salmon.
View Article and Find Full Text PDFFish consumption is considered health beneficial as it decreases cardiovascular disease (CVD)-risk through effects on plasma lipids and inflammation. We investigated a salmon protein hydrolysate (SPH) that is hypothesized to influence lipid metabolism and to have anti-atherosclerotic and anti-inflammatory properties. 24 female apolipoprotein (apo) E(-/-) mice were divided into two groups and fed a high-fat diet with or without 5% (w/w) SPH for 12 weeks.
View Article and Find Full Text PDFBackground: Amount and type of dietary protein have been shown to influence blood lipids. The present study aimed to evaluate the effects of a water-soluble fraction of chicken protein (CP) on plasma and hepatic lipid metabolism in normolipidemic rats.
Methods: Male Wistar rats were fed either a control diet with 20 % w/w casein as the protein source, or an experimental diet where casein was replaced with CP at 6, 14, or 20 % w/w for 4 weeks.
Tetradecylthioacetic acid (TTA) is a hypolipidemic antioxidant with immunomodulating properties involving activation of peroxisome proliferator-activated receptors (PPARs) and proliferation of mitochondria. This study aimed to penetrate the effect of TTA on the development of atherosclerotic lesions in apolipoprotein (apo)-E(-/-) mice fed a high-fat diet containing 0.3% TTA for 12 weeks.
View Article and Find Full Text PDFPeroxisome proliferator-activated receptors (PPARs) are important in the regulation of lipid and glucose metabolism. Recent studies have shown that PPARα-activation by WY 14,643 regulates the metabolism of amino acids. We investigated the effect of PPAR activation on plasma amino acid levels using two PPARα activators with different ligand binding properties, tetradecylthioacetic acid (TTA) and fish oil, where the pan-PPAR agonist TTA is a more potent ligand than omega-3 polyunsaturated fatty acids.
View Article and Find Full Text PDFBackground: To ensure sustainable aquaculture, fish derived raw materials are replaced by vegetable ingredients. Fatty acid composition and contaminant status of farmed Atlantic salmon (Salmo salar L.) are affected by the use of plant ingredients and a spillover effect on consumers is thus expected.
View Article and Find Full Text PDFA positive inotropic responsiveness to serotonin, mediated by 5-HT(4) and 5-HT(2A) receptors, appears in the ventricle of rats with post-infarction congestive heart failure (HF) and pressure overload-induced hypertrophy. A hallmark of HF is a transition towards a foetal genotype which correlates with loss of cardiac functions. Thus, we wanted to investigate whether the foetal and neonatal cardiac ventricle displays serotonin responsiveness.
View Article and Find Full Text PDFPurpose: Biological effects of marine oils, fish oil (FO) and krill oil (KO), are mostly attributed to the high content of n-3 polyunsaturated fatty acids (n-3 PUFAs), predominantly eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA). The study was aimed to investigate the influence of FO and KO on lipid homeostasis and inflammation in an animal model of persistent low-grade exposure to human tumor necrosis factor α (hTNF-α) and to evaluate whether these effects depend on the structural forms of EPA and DHA [triacylglycerols (TAG) vs. phospholipids].
View Article and Find Full Text PDFA promising approach to ameliorate obesity and obesity-associated diseases is the identification of new sources of dietary ingredients. The present study investigated the hepatic regulation of energy metabolism after feeding a powder isolated from Antarctic krill (Euphausia superba) in a transgenic mouse model of chronic inflammation (human tumor necrosis factor-alpha (hTNFα) mice) known to display unfavorable effects on lipid metabolism. Male hTNFα mice were fed high-fat diets (23.
View Article and Find Full Text PDFNutrients in seafood are known to be beneficial for brain development. Effects of maternal exposure to 2,2',4,4' tetrabromo diphenylether (BDE47) was investigated, alongside the potential ameliorating impact of seafood nutrients, through assessment of neurobehaviour and gene expression in brain and liver. Developing mice were exposed during gestation and lactation via dams dosed through casein- or salmon-based feed, spiked with BDE47.
View Article and Find Full Text PDFCharacterisation of G-protein-coupled receptor (GPCR) mRNA expression under normal, different pharmacological and pathological conditions in experimental animal models and human tissue biopsies by quantitative real-time reverse transcription polymerase chain reaction (RT-qPCR) is a valuable approach to understand the regulation of GPCR expression. RT-qPCR is specific and sensitive with a broad dynamic range, which allows precise quantification of mRNA species of interest. In addition to measuring the relative levels of mRNA in a tissue or changes in expression levels between groups of genes of interest, RT-qPCR is also used to identify splice variants and single nucleotide polymorphisms (SNPs) of GPCRs.
View Article and Find Full Text PDFFish and seafood are important contributions to a healthy diet, but also contain persistent organic pollutants (POPs) like polybrominated diphenylethers (PBDEs) and polychlorinated biphenyls (PCBs). Discrepancies have been found between intake and accumulated levels of POPs, where fish consumers have had similar levels of POPs to the general population. Similarly fish oil consumption has been found to reduce accumulation of POPs.
View Article and Find Full Text PDFControversy remains regarding the safety of consuming certain types of seafood, particularly during pregnancy. While seafood is rich in vital nutrients, it may also be an important source of environmental contaminants such as methylmercury (MeHg). Selenium (Se) is one essential element present in seafood, hypothesised to ameliorate MeHg toxicity.
View Article and Find Full Text PDFBackground: Polychlorinated biphenyls (PCBs) are widespread in the environment, human food and breast milk. Seafood is known to contain nutrients beneficial for the normal development and function of the brain, but also contaminants such as PCBs which are neurotoxic. Exposure to non-coplanar PCBs during brain development can disrupt spontaneous behaviour in mice and lead to hyperactive behaviour.
View Article and Find Full Text PDFSince normalization strategies plays a pivotal role for obtaining reliable results when performing quantitative PCR (qPCR) analyses, this study investigated several miRNA normalization candidates in regards to their efficiency as normalization standards in the ischemic reperfused ex vivo rat heart, with special reference to regulation of the miRNAs miR-1 and miR-101b. The possibility of including primers for several miRNAs in one reverse transcription (RT) reaction was also investigated. Langendorff perfused rat hearts were subjected to 30 min regional ischemia and 0, 1, 5, 15, or 120 min reperfusion.
View Article and Find Full Text PDFBackground: Quantitative real-time RT-PCR (RT-qPCR) is a highly sensitive method for mRNA quantification, but requires invariant expression of the chosen reference gene(s). In pathological myocardium, there is limited information on suitable reference genes other than the commonly used Gapdh mRNA and 18S ribosomal RNA. Our aim was to evaluate and identify suitable reference genes in human failing myocardium, in rat and mouse post-myocardial infarction (post-MI) heart failure and across developmental stages in fetal and neonatal rat myocardium.
View Article and Find Full Text PDFCardiac ventricular responsiveness to serotonin appears in rat postinfarction congestive heart failure (CHF), mainly mediated by 5-HT(4) receptors in chronic dilated CHF and 5-HT(2A) receptors in acute CHF. To differentiate between the effects of left ventricular (LV) hypertrophy and failure on 5-HT(2A)- and 5-HT(4)-mediated inotropic serotonin response, male Wistar rats with increasing LV hypertrophy (AB1-3) and failure (ABHF) 6 weeks after banding of the ascending aorta were screened for contractile function in vivo (echocardiography) and ex vivo in LV papillary muscles, and mRNA expression level determined by RT-PCR. Both AB1-3 and ABHF displayed LV hypertrophy and remodelling.
View Article and Find Full Text PDFCongestive heart failure (CHF) induces changes in the neurohumoral system and gene expression in viable myocardium. Several of these genes encode G protein-coupled receptors (GPCRs) involved in mechanisms which compensate for impaired myocardial function. We used real-time quantitative RT-PCR (Q-RT-PCR) to investigate the expression of mRNA encoding 15 different GPCRs possibly involved in CHF, and the effect of normalisation to GAPDH mRNA (GAPDH) or 18S rRNA (18S).
View Article and Find Full Text PDFPrucalopride is a gastrointestinal prokinetic drug that acts through 5-HT4 receptors, but its potential effects on cardiac atrial function are unknown. We investigated the effects of prucalopride on human right atrium, piglet left atrium, and piglet sinoatrial node. The effects of prucalopride on 5-HT4 receptor splice variants a, b, g and i, known to be expressed in human atrium, were studied for comparison.
View Article and Find Full Text PDFCardiac responsiveness to neurohumoral stimulation is altered in congestive heart failure (CHF). In chronic CHF, the left ventricle has become sensitive to serotonin because of appearance of Gs-coupled 5-HT4 receptors. Whether this also occurs in acute CHF is unknown.
View Article and Find Full Text PDFBackground: Current pharmacological treatment of congestive heart failure (CHF) addresses changes in neurohumoral stimulation or cardiac responsiveness to such stimulation. Yet, undiscovered neurohumoral changes, adaptive or maladaptive, may occur in CHF and suggest novel pharmacological treatment. Serotonin [5-hydroxytryptamine (5-HT)] enhances contractility and causes arrhythmias through 5-HT(4) receptors in human atrium and ventricle but not through rat ventricular 5-HT(4) receptors.
View Article and Find Full Text PDF