Prosthetic lipoyl groups are essential for the metabolic activity of several multienzyme complexes in most organisms. In plants, octanoyltransferase (LIP2) and lipoyl synthase (LIP1) enzymes in the mitochondria and plastids participate in the de novo synthesis of lipoic acid, and in the attachment of the lipoyl cofactors to their specific targets. In plastids, the lipoylated pyruvate dehydrogenase complex catalyzes the synthesis of the acetyl-CoA that is required for de novo fatty acid synthesis.
View Article and Find Full Text PDFLipoic acid (LA, 6,8-dithiooctanoic acid) is a sulfur containing coenzyme essential for the activity of several key enzymes involved in oxidative and single carbon metabolism in most bacteria and eukaryotes. LA is synthetized by the concerted activity of the octanoyltransferase (LIP2, EC 2.3.
View Article and Find Full Text PDFHistone modifications are of paramount importance during plant development. Investigating chromatin remodeling in developing oilseeds sheds light on the molecular mechanisms controlling fatty acid metabolism and facilitates the identification of new functional regions in oil crop genomes. The present study characterizes the epigenetic modifications H3K4me3 in relationship with the expression of fatty acid-related genes and transcription factors in developing sunflower seeds.
View Article and Find Full Text PDFLipoyl synthases are key enzymes in lipoic acid biosynthesis, a co-factor of several enzyme complexes involved in central metabolism. Plant pyruvate dehydrogenase complex (PDH), located in mitochondria and plastids, catalyses the first step of fatty acid biosynthesis in these organelles. Among their different components, the E2 subunit requires the lipoic acid prosthetic group to be active.
View Article and Find Full Text PDFIn the present study, we describe the molecular and biochemical characterization of sunflower (Helianthus annuus L.) enolase (ENO, EC 4.2.
View Article and Find Full Text PDFOmega-7 monoenoic fatty acids (ω-7 FAs) are increasingly exploited both for their positive effects on health and for their industrial potential. Some plant species produce fruits or seeds with high amounts of ω-7 FAs. However, the low yields and poor agronomic properties of these plants preclude their commercial use.
View Article and Find Full Text PDFIn angiosperms, double fertilization of the embryo sac initiates the development of the embryo and the endosperm. In Arabidopsis thaliana, an exalbuminous species, the endosperm is reduced to one cell layer during seed maturation and reserves such as oil are massively deposited in the enlarging embryo. Here, we consider the strikingly different fatty acid (FA) compositions of the oils stored in the two zygotic tissues.
View Article and Find Full Text PDFIn the plastids of plant cells, fatty acid (FA) production is a central biosynthetic process. It provides acyl chains for the formation of a variety of acyl lipids fulfilling different biological functions ranging from membrane synthesis to signaling or carbon and energy storage. The biochemical pathway leading to the synthesis of FA has been described for a long time.
View Article and Find Full Text PDFRapid turnover of stored triacylglycerol occurs after seed germination, releasing fatty acids that provide carbon and energy for seedling establishment. Glycerolipid and fatty acid turnover that occurs at other times in the plant life cycle, including senescence is less studied. Although the entire pathway of β-oxidation is induced during senescence, Arabidopsis leaf fatty acids turnover at rates 50 fold lower than in seedlings.
View Article and Find Full Text PDFBackground: The prevalence of cognitive impairment (CI) will double in the next 20 years, making early detection a key priority.
Objectives: Validation of a 5-minute CI screening test.
Methods: Adults aged 60 and older were recruited from memory clinics and the community at large in the Santiago, Chile metropolitan area.
Three cDNAs encoding different phosphoglycerate kinase (PGK, EC 2.7.2.
View Article and Find Full Text PDFThe circadian clock temporally coordinates plant growth and metabolism in close synchronization with the diurnal and seasonal environmental changes. Research over the last decade has identified a number of clock components and a variety of regulatory mechanisms responsible for the rhythmic oscillations in metabolic and physiological activities. At the core of the clock, transcriptional/translational feedback loops modulate the expression of a significant proportion of the genome.
View Article and Find Full Text PDFTranscriptome analysis based on deep expressed sequence tag (EST) sequencing allows quantitative comparisons of gene expression across multiple species. Using pyrosequencing, we generated over 7 million ESTs from four stages of developing seeds of Ricinus communis, Brassica napus, Euonymus alatus and Tropaeolum majus, which differ in their storage tissue for oil, their ability to photosynthesize and in the structure and content of their triacylglycerols (TAG). The larger number of ESTs in these 16 datasets provided reliable estimates of the expression of acyltransferases and other enzymes expressed at low levels.
View Article and Find Full Text PDFAs opposed to other oilseeds, developing sunflower seeds do not accumulate starch initially. They rely on the sucrose that comes from the mother plant to synthesise lipid precursors. Glycolysis is the principal source of carbon skeletons and reducing power for lipid biosynthesis.
View Article and Find Full Text PDFA full-length hexokinase cDNA, HaHXK1, was cloned and characterized from Helianthus annuus L. developing seeds. Based on its sequence and phylogenetic relationships, HaHXK1 is a membrane-associated (type-B) hexokinase.
View Article and Find Full Text PDFLipid biosynthesis in developing sunflower (Helianthus annuus L.) seeds requires reducing power. One of the main sources of cellular NADPH is the oxidative pentose phosphate pathway (OPPP), generated from the oxidation of glucose-6-phosphate.
View Article and Find Full Text PDFUnlike other oilseeds (e.g. Arabidopsis), developing sunflower seeds do not accumulate a lot of starch and they rely on the sucrose that comes from the mother plant to synthesise lipid precursors.
View Article and Find Full Text PDFMetabolite fingerprinting provides a powerful method for discriminating between biological samples on the basis of differences in metabolism caused by such factors as growth conditions, developmental stage or genotype. This protocol describes a technique for acquiring metabolite fingerprints from samples of plant origin. The preferred method involves freezing the tissue rapidly to stop metabolism, extracting soluble metabolites using perchloric acid (HClO4) and then obtaining a fingerprint of the metabolic composition of the sample using 1D 1H NMR spectroscopy.
View Article and Find Full Text PDF