Publications by authors named "Tron V"

Next-generation sequencing (NGS) is increasingly being utilized as an ancillary tool for diagnostically challenging melanocytic neoplasms. It is incumbent upon the pathology community to perform studies assessing the benefits and limitations of these tools in specific diagnostic scenarios. One of the most challenging diagnostic scenarios faced by skin pathologists involves accurate diagnosis of desmoplastic melanocytic neoplasms (DMNs).

View Article and Find Full Text PDF

Background: Merkel cell carcinoma (MCC) is a rare, aggressive skin cancer that most commonly occurs in ultraviolet-exposed body sites. The epidemiology of MCC in different geographies and populations is not well characterized.

Objectives: The objective of this systematic review is to summarize evidence on the incidence, mortality and survival rates of MCC from population-based studies.

View Article and Find Full Text PDF

Activating mutations in MAP2K1 can be seen in benign and intermediate-grade melanocytic neoplasms with spitzoid morphology. We analyzed the clinical, histopathologic, and genetic features for 16 cases of benign and intermediate-grade melanocytic tumors harboring activating MAP2K1 mutations. We compared them to Spitz neoplasms with characteristic Spitz fusions or HRAS mutation.

View Article and Find Full Text PDF

Atypical Spitzoid melanocytic tumors are diagnostically challenging. Many studies have suggested various genomic markers to improve classification and prognostication. We aimed to assess whether next-generation sequencing studies using the Tempus xO assay assessing mutations in 1711 cancer-related genes and performing whole transcriptome mRNA sequencing for structural alterations could improve diagnostic agreement and accuracy in assessing neoplasms with Spitzoid histologic features.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers examined the expression of 580 miRNAs in both non-metastatic and metastatic melanoma cells, finding that higher levels of miR-138-5p were linked to increased malignancy.
  • Functional experiments demonstrated that miR-138-5p promotes an aggressive cancer phenotype by enhancing cell proliferation, migration, and resistance to cell death, while directly targeting the tumor suppressor Trp53, which is associated with poor prognosis in melanoma cases.
View Article and Find Full Text PDF

Since 2014, programmed cell death protein 1 (PD-1)/programmed cell death ligand 1 (PD-L1) checkpoint inhibitors have been approved by various regulatory agencies for the treatment of multiple cancers including melanoma, lung cancer, urothelial carcinoma, renal cell carcinoma, head and neck cancer, classical Hodgkin lymphoma, colorectal cancer, gastroesophageal cancer, hepatocellular cancer, and other solid tumors. Of these approved drug/disease combinations, a subset also has regulatory agency-approved, commercially available companion/complementary diagnostic assays that were clinically validated using data from their corresponding clinical trials. The objective of this document is to provide evidence-based guidance to assist clinical laboratories in establishing fit-for-purpose PD-L1 biomarker assays that can accurately identify patients with specific tumor types who may respond to specific approved immuno-oncology therapies targeting the PD-1/PD-L1 checkpoint.

View Article and Find Full Text PDF

Dysfunction of key miRNA pathways regulating basic cellular processes is a common driver of many cancers. However, the biological roles and/or clinical applications of such pathways in Merkel cell carcinoma (MCC), a rare but lethal cutaneous neuroendocrine (NE) malignancy, have yet to be determined. Previous work has established that miR-375 is highly expressed in MCC tumors, but its biological role in MCC remains unknown.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are excellent tumor biomarkers because of their cell-type specificity and abundance. However, many miRNA detection methods, such as real-time PCR, obliterate valuable visuospatial information in tissue samples. To enable miRNA visualization in formalin-fixed paraffin-embedded (FFPE) tissues, we developed multicolor miRNA FISH.

View Article and Find Full Text PDF

Purpose: We report a multicenter phase II study of patients with metastatic melanoma (MM), evaluating the efficacy, toxicity, progression-free survival (PFS), immunogenicity, and biomarker profile of interleukin-21 (IL-21).

Patients And Methods: Patients with no prior systemic therapy and with limited-disease MM were treated with IL-21 by using three different dosing regimens. Cohort 1 received 50 μg/kg per day by outpatient intravenous bolus injection for 5 days of each week during weeks 1, 3, and 5 of an 8-week cycle.

View Article and Find Full Text PDF

In previous studies, we demonstrated that miR-193b expression is reduced in melanoma relative to benign nevi, and also that miR-193b represses cyclin D1 and Mcl-1 expression. We suggested that stathmin 1 (STMN1) might be a target of miR-193b. STMN1 normally regulates microtubule dynamics either by sequestering free tubulin heterodimers or by promoting microtubule catastrophe.

View Article and Find Full Text PDF

Recent progress in understanding the molecular mechanisms of the initiation and progression of melanoma has created new opportunities for developing novel therapeutic modalities to manage this potentially lethal disease. Although at first glance, melanoma carcinogenesis appears to be a chaotic system, it is indeed, arguably, a deterministic multistep process involving sequential alterations of proto-oncogenes, tumour suppressors and miRNA genes. The scope of this article is to discuss the most recent and significant advances in melanoma molecular therapeutics.

View Article and Find Full Text PDF

Background: MicroRNAs (miRNAs, miRs) are small non-coding RNAs that negatively regulate gene expression at the post-transcriptional level. MicroRNAs are dysregulated in cancer and may play essential roles in tumorigenesis. Additionally, miRNAs have been shown to have prognostic and diagnostic value in certain types of cancer.

View Article and Find Full Text PDF

MicroRNAs play important roles in gene regulation, and their expression is frequently dysregulated in cancer cells. In a previous study, we reported that miR-193b represses cell proliferation and regulates cyclin D1 in melanoma cells, suggesting that miR-193b could act as a tumor suppressor. Herein, we demonstrate that miR-193b also down-regulates myeloid cell leukemia sequence 1 (Mcl-1) in melanoma cells.

View Article and Find Full Text PDF

The TP53 gene (encoding the p53 tumor suppressor) is rarely mutated, although frequently inactivated, in medulloblastoma and ependymoma. Recent work in mouse models showed that the loss of p53 accelerated the development of medulloblastoma. The mechanism underlying p53 inactivation in human brain tumors is not completely understood.

View Article and Find Full Text PDF

The mitogen-activated protein kinase (MAPK) pathway is constitutively activated in the majority of melanomas, promoting cell survival, proliferation and migration. In addition, anti-apoptotic Bcl-2 family proteins Mcl-1, Bcl-xL and Bcl-2 are frequently overexpressed, contributing to melanoma's well-documented chemoresistance. Recently, it was reported that the combination of MAPK pathway inhibition by specific MEK inhibitors and Bcl-2 family inhibition by BH3-mimetic ABT-737 synergistically induces apoptotic cell death in melanoma cell lines.

View Article and Find Full Text PDF

Cutaneous melanoma is an aggressive form of human skin cancer characterized by high metastatic potential and poor prognosis. To better understand the role of microRNAs (miRNAs) in melanoma, the expression of 470 miRNAs was profiled in tissue samples from benign nevi and metastatic melanomas. We identified 31 miRNAs that were differentially expressed (13 up-regulated and 18 down-regulated) in metastatic melanomas relative to benign nevi.

View Article and Find Full Text PDF

Many studies have shown that DNA mismatch repair (MMR) has a role beyond that of repair in response to several types of DNA damage, including ultraviolet radiation (UV). We have demonstrated previously that the MMR-dependent component of UVB-induced apoptosis is integral to the suppression of UVB-induced tumorigenesis. Here we demonstrate that Msh6-dependent UVB-induced apoptotic pathway is both activated via the mitochondria and p53-independent.

View Article and Find Full Text PDF

Background: Malignant melanoma is resistant to almost all conventional forms of chemotherapy. Recent evidence suggests that anti-apoptotic proteins of the Bcl-2 family are overexpressed in melanoma and may contribute to melanoma's striking resistance to apoptosis. ABT-737, a small-molecule inhibitor of Bcl-2, Bcl-xl and Bcl-w, has demonstrated efficacy in several forms of leukemia, lymphoma as well as solid tumors.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are small, noncoding RNAs that suppress gene expression at the posttranscriptional level via an antisense RNA-RNA interaction. miRNAs used for array-based profiling are generally purified from either snap-frozen or fresh samples. Because tissues found in most pathology departments are available only in formalin-fixed and paraffin-embedded (FFPE) states, we sought to evaluate miRNA derived from FFPE samples for microarray analysis.

View Article and Find Full Text PDF

The multi-functionality of the DNA mismatch repair (MMR) proteins has been demonstrated by their role in regulation of the cell cycle and apoptosis, as well as DNA repair. Using a unique MSH2-/- non-tumor human lymphoblastoid cell line we show that MMR facilitates G2/M arrest after UVB-induced DNA damage. Deficiency in MSH2 leads to a decrease in the induction of G2/M cell cycle checkpoint following UVB radiation in MSH2-null non-tumor cells.

View Article and Find Full Text PDF

Background: In addition to an established role in the repair of postreplicative DNA errors, DNA mismatch repair (MMR) proteins also contribute to cellular responses to exogenous DNA damage. Previously, we have shown that Msh2-null mice display increased sensitivity to ultraviolet (UV) B-induced tumorigenesis, but squamous cell carcinomas (SCC) generated are microsatellite stable, suggesting a role for MMR other than postreplicative repair in UV-induced cutaneous tumour formation.

Objectives: We questioned whether there was evidence of MMR dysfunction in human SCC, thus validating the mouse models of MMR-dependent UVB-induced skin cancer.

View Article and Find Full Text PDF

DNA mismatch repair (MMR) is a highly conserved system that repairs DNA adducts acquired during replication, as well as some forms of exogenous/endogenous DNA damage. Additionally, MMR proteins bind to DNA adducts that are not removed by MMR and influence damage-response mechanisms other than repair. Hereditary non-polyposis colorectal cancer, as well as mouse models for MMR deficiency, illustrate that MMR proteins are required for maintenance of genetic stability and tumor suppression.

View Article and Find Full Text PDF

A 47-year-old woman had episodic dyspnoea, fatigue, chest radiograph opacifications, and palpable purpura whose biopsy showed leucocytoclastic vasculitis. Negative immunoglobulin A immunofluorescence staining and clinical exclusion of other disorders narrowed her diagnosis to cutaneous pulmonary hypersensitivity vasculitis.

View Article and Find Full Text PDF

Background: Apoptosis, or programmed cell death, is an essential physiological process that controls cell numbers during physiological processes, and eliminates abnormal cells that can potentially harm an organism.

Objective: This review summarizes our current state of knowledge of apoptosis induction in skin by UV radiation.

Methods: A review of the literature was undertaken focusing on cell death in the skin secondary to UV radiation.

View Article and Find Full Text PDF