Publications by authors named "Trollinger D"

Periodic assessment of gene expression for diagnosis and monitoring in rheumatoid arthritis (RA) may provide a readily available and useful method to detect subclinical disease progression and follow responses to therapy with disease modifying anti-rheumatic agents (DMARDs) or anti-TNF-α therapy. We used quantitative real-time PCR to compare peripheral blood gene expression profiles in active ("unstable") RA patients on DMARDs, stable RA patients on DMARDs, and stable RA patients treated with a combination of a disease-modifying anti-rheumatoid drug (DMARD) and an anti-TNF-α agent (infliximab or etanercept) to healthy human controls. The expression of 48 inflammatory genes were compared between healthy controls (N = 122), unstable DMARD patients (N = 18), stable DMARD patients (N = 26), and stable patients on combination therapy (N = 20).

View Article and Find Full Text PDF

Current therapies for treating skeletal pain have significant limitations as available drugs (non-steroidal anti-inflammatory drugs and opiates) have significant unwanted side effects. Targeting nerve growth factor (NGF) or its cognate receptor tropomysin receptor kinase A (TrkA) has recently become an attractive target for inhibition of adult skeletal pain. Here we explore whether sustained administration of a selective small molecule Trk inhibitor that blocks TrkA, TrkB and TrkC kinase activity with nanomolar affinity reduces skeletal pain while allowing the maintenance of sensory and sympathetic neurons in the adult mouse.

View Article and Find Full Text PDF

The use of quantitative gene expression analysis for the diagnosis, prognosis, and monitoring of disease requires the ability to distinguish pathophysiological changes from natural variations. To characterize these variations in apparently healthy subjects, quantitative real-time PCR was used to measure various immune response genes in whole blood collected from blood bank donors. In a single-time-point study of 131 donors, of 48 target genes, 43 were consistently expressed and 34 followed approximately log-normal distribution.

View Article and Find Full Text PDF

Background: Accurate quantification of mRNA in whole blood is made difficult by the simultaneous degradation of gene transcripts and unintended gene induction caused by sample handling or uncontrolled activation of coagulation. This study was designed to compare a new blood collection tube (PAXgene Blood RNA System) and a companion sample preparation reagent set with a traditional sample collection and preparation method for the purpose of gene expression analysis.

Methods: We collected parallel blood samples from healthy donors into the new sample collection tubes and control EDTA tubes and performed serial RNA extractions on samples stored for 5 days at room temperature and for up to 90 days at 4 and 20 degrees C.

View Article and Find Full Text PDF

Directed migration of keratinocytes is essential for wound healing. The migration of human keratinocytes in vitro is strongly influenced by the presence of a physiological electric field and these cells migrate towards the negative pole of such a field (galvanotaxis). We have previously shown that the depletion of extracellular calcium blocks the directional migration of cultured human keratinocytes in an electric field (Fang et al.

View Article and Find Full Text PDF

Despite their potential importance in placental HIV infection and placental immune function, nothing is known about the expression of chemokine receptors by human syncytiotrophoblast cells. Immunocytochemical analysis revealed that primary cultures of term syncytiotrophoblast cells express CCR1, CCR3, CXCR4, and CCR6. Immunohistochemical examination of cryosections of term placental villous tissue confirmed the expression of CCR3, CXCR4, and CCR6 by trophoblast cells.

View Article and Find Full Text PDF

A cold/warm loading protocol was used to ester-load Rhod 2 into mitochondria and other organelles and Fluo 3 into the cytosol of adult rabbit cardiac myocytes for confocal fluorescence imaging. Transient increases in both cytosolic Fluo 3 and mitochondrial Rhod 2 fluorescence occurred after electrical stimulation. Ruthenium red, a blocker of the mitochondrial Ca(2+) uniporter, inhibited mitochondrial Rhod 2 fluorescence transients but not cytosolic Fluo 3 transients.

View Article and Find Full Text PDF

Four p38 mitogen-activated protein kinases (p38alpha, beta, gamma, delta) have been described. To understand the role of p38 family members in inflammation, we determined their relative expression in cells that participate in the inflammatory process. Expression was measured at the level of mRNA by reverse-transcriptase PCR and protein by Western blot analysis.

View Article and Find Full Text PDF

A strategy of cold loading of the Ca2+-indicating fluorophore Rhod 2-AM followed by warm incubation was developed to selectively label mitochondria of adult rabbit cardiac myocytes. After electrical stimulation, mitochondrial Rhod 2 fluorescence observed by confocal microscopy increased and then rapidly decayed to baseline. In regions between mitochondria, the fluorescent transients were small or absent.

View Article and Find Full Text PDF

Mitogen-activated protein kinase (MAPK) signaling cascades include MAPK or extracellular signal-regulated kinase (ERK), MAPK kinase (MKK or MEK), and MAPK kinase kinase (MAPKKK or MEKK). MAPKK kinase/MEKK phosphorylates and activates its downstream protein kinase, MAPK kinase/MEK, which in turn activates MAPK. We report herein the isolation of a cDNA encoding a novel protein kinase designated MAPKKK5 from a human macrophage library.

View Article and Find Full Text PDF

Mitochondrial free Ca2+ may regulate mitochondrial ATP production during cardiac exercise. Here, using laser scanning confocal microscopy of adult rabbit cardiac myocytes co-loaded with Fluo-3 to measure free Ca2+ and tetramethylrhodamine methylester to identify mitochondria, we measured cytosolic and mitochondrial Ca2+ transients during the contractile cycle. In resting cells, cytosolic and mitochondrial Fluo-3 signals were similar.

View Article and Find Full Text PDF

During myocardial ischemia, a large reduction of tissue pH develops, and tissue pH returns to normal after reperfusion. In recent studies, we evaluated the role of pH in ischemia/reperfusion injury to cultured cardiac myocytes and perfused papillary muscles. Acidosis (pH < or = 7.

View Article and Find Full Text PDF

An important virulence factor of Salmonella spp. is their ability to gain access to host cells. A type III secretion system encoded in the inv and spa loci of these organisms is essential for this phenotype.

View Article and Find Full Text PDF

Entry into host cells is an essential feature in the pathogenicity of Salmonella spp. The inv locus of Salmonella typhimurium encodes several proteins which are components of a type III protein secretion system required for these organisms to gain access to host cells. We report here the identification of several proteins whose secretion into the culture supernatant of S.

View Article and Find Full Text PDF

The goal of this work was to define the distinction between irreversible structural changes and actual loss of cell viability during hypoxic/ischemic/reperfusion injury to one-day cultured adult rabbit cardiac myocytes. Myocytes were exposed to 5 mM NaCN and 20 mM 2-deoxyglucose (chemical hypoxia) or anoxia at pH 6.2 to simulate ischemia.

View Article and Find Full Text PDF

A novel human serum protein with a molecular mass of 87,000 daltons was purified to homogeneity and subjected to amino acid sequence analyses. These sequences were used to design oligonucleotide primers and to isolate a full-length cDNA. The amino acid sequence encoded by the cDNA shares strong similarity to albumin family members and shares the characteristic pattern of Cys residues observed in this family.

View Article and Find Full Text PDF

We used molecular cloning and functional analyses to extend the family of Neu differentiation factors (NDFs) and to explore the biochemical activity of different NDF isoforms. Exhaustive cloning revealed the existence of six distinct fibroblastic pro-NDFs, whose basic transmembrane structure includes an immunoglobulin-like motif and an epidermal growth factor (EGF)-like domain. Structural variation is confined to three domains: the C-terminal portion of the EGF-like domain (isoforms alpha and beta), the adjacent juxtamembrane stretch (isoforms 1 to 4), and the variable-length cytoplasmic domain (isoforms a, b, and c).

View Article and Find Full Text PDF

Activity of several ion channels is controlled by heterotrimeric GTP-binding proteins (G proteins) via a membrane-delimited pathway that does not involve cytoplasmic intermediates. The best studied example is the K+ channel activated by muscarinic agonists in the atrium, which plays a crucial role in regulating the heartbeat. To enable studies of the molecular mechanisms of activation, this channel, denoted KGA, was cloned from a rat atrium cDNA library by functional coupling to coexpressed serotonin type 1A receptors in Xenopus oocytes.

View Article and Find Full Text PDF

A gene was cloned from Pseudomonas syringae pv. glycinea that hybridized to avirulence gene D (avrD), previously cloned from P. s.

View Article and Find Full Text PDF

A pel gene cloned from strain EC153 of Erwinia carotovora encoded a pectate lyase that macerated plant tissue with moderate efficiency. This gene, called pel153, was sequenced and found to possess considerable homology with a pectate lyase gene from Yersinia pseudotuberculosis. The Yersinia protein, however, was truncated at the carboxyl terminal end relative to the Erwinia gene product and had a lower isoelectric point.

View Article and Find Full Text PDF

Improved broad-host-range plasmid vectors were constructed based on existing plasmids RSF1010 and RK404. The new plasmids pDSK509, pDSK519, and pRK415, have several additional cloning sites and improved antibiotic-resistance genes which facilitate subcloning and mobilization into various Gram-negative bacteria. Several new polylinker sites were added to the Escherichia coli plasmids pUC118 and pUC119, resulting in the new plasmids, pUC128 and pUC129.

View Article and Find Full Text PDF