The development of gradient index free-form micro-optic components dedicated to the mid-infrared range is challenging due to the lack of appropriate technology. We propose a method for developing gradient index components for broadband infrared range beyond the transmission window of silicate glass based on nanostructurization using a stack-and-draw fiber drawing technique. A proof-of-concept microlens is developed and verified experimentally in the wavelength range 1.
View Article and Find Full Text PDFImproved long-wavelength transmission and supercontinuum (SC) generation is demonstrated by antireflective (AR) nanoimprinting and tapering of chalcogenide photonic crystal fibers (PCFs). Using a SC source input spanning from 1 to 4.2 μm, the total transmission of a 15 μm core diameter PCF was improved from ∼53% to ∼74% by nanoimprinting of AR structures on both input and output facets of the fiber.
View Article and Find Full Text PDFThe chemical and structural homogeneity of selenide glasses produced by mechanical homogenization of the melt in a rocking furnace is investigated by Raman and Energy Dispersive Spectroscopy (EDS). Both techniques demonstrate that the glass is macroscopically homogeneous along the entire length of a 6 cm rod. EDS imaging performed over four orders of magnitude in scale further confirms that the glass is homogeneous down to the sub-micron scale.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2019
Flexible, large-area, and low-cost thermal sensing networks with high spatial and temporal resolution are of profound importance in addressing the increasing needs for industrial processing, medical diagnosis, and military defense. Here, a thermoelectric (TE) fiber is fabricated by thermally codrawing a macroscopic preform containing a semiconducting glass core and a polymer cladding to deliver thermal sensor functionalities at fiber-optic length scales, flexibility, and uniformity. The resulting TE fiber sensor operates in a wide temperature range with high thermal detection sensitivity and accuracy, while offering ultraflexibility with the bending curvature radius below 2.
View Article and Find Full Text PDFThe trade-off between the spectral bandwidth and average output power from chalcogenide fiber-based mid-infrared supercontinuum sources is one of the major challenges towards practical application of the technology. In this paper we address this challenge through tapering of large-mode-area chalcogenide photonic crystal fibers. Compared to previously reported step-index fiber tapers the photonic crystal fiber structure ensures single-mode propagation, which improves the beam quality and reduces losses in the taper due to higher-order mode stripping.
View Article and Find Full Text PDFGuided optics spectrometers can be essentially classified into two main families: based on Fourier transform or dispersion. In the first case, an interferogram generated inside an optical waveguide and containing the spectral information is sampled using spatially distributed nanodetectors. These scatter quasi-non-perturbingly light into the detector that is in contact with the waveguide, helping to reconstruct the stationary wave.
View Article and Find Full Text PDFA more than 1.5 octave-spanning mid-infrared supercontinuum (1.2 to 3.
View Article and Find Full Text PDFA highly birefringent polarization-maintaining chalcogenide microstructured optical fiber (MOF) covering the 3-8.5 µm wavelength range has been realized for the first time. The fiber cross-section consists of 3 rings of circular air holes with 2 larger holes adjacent to the core.
View Article and Find Full Text PDFA low-loss suspended core As(38)Se(62) fiber with core diameter of 4.5 μm and a zero-dispersion wavelength of 3.5 μm was used for mid-infrared supercontinuum generation.
View Article and Find Full Text PDFA double-nanospike As2S3-silica hybrid waveguide structure is reported. The structure comprises nanotapers at input and output ends of a step-index waveguide with a subwavelength core (1 μm in diameter), with the aim of increasing the in-coupling and out-coupling efficiency. The design of the input nanospike is numerically optimized to match both the diameter and divergence of the input beam, resulting in efficient excitation of the fundamental mode of the waveguide.
View Article and Find Full Text PDFAn original way to obtain fibers with special chromatic dispersion and single-mode behavior is to consider microstructured optical fibers (MOFs). These fibers present unique optical properties thanks to the high degree of freedom in the design of their geometrical structure. In this study, the first all-solid all-chalcogenide MOFs exhibiting photonic bandgap transmission have been achieved and optically characterized.
View Article and Find Full Text PDFCurrent demands in astrophotonics impose advancing optical functions in infrared domains within embedded refractive index designs. We demonstrate concepts for large-mode-area guiding in ultrafast laser photowritten waveguides in bulk Sulfur-based chalcogenide glasses. If positive index contrasts are weak in As2S3, Ge doping increases the matrix rigidity and allows for high contrast (10(-3)) positive refractive index changes.
View Article and Find Full Text PDFWe observe the coherence of the supercontinuum generated in a nanospike chalcogenide-silica hybrid waveguide pumped at 2 μm. The supercontinuum is shown to be coherent with the pump by interfering it with a doubly resonant optical parametric oscillator (OPO) that is itself coherent with the shared pump laser. This enables coherent locking of the OPO to the optically referenced pump frequency comb, resulting in a composite frequency comb with wavelengths from 1 to 6 μm.
View Article and Find Full Text PDFThe realization of an all-solid microstructured optical fiber based on chalcogenide glasses was achieved. The fiber presents As(2)S(3) inclusions selected as low refractive index material (n = 2.4) embedded in a As(38)Se(62) glass matrix (n = 2.
View Article and Find Full Text PDFEfficient generation of a broad-band mid-infrared supercontinuum spectrum is reported in an arsenic trisulphide waveguide embedded in silica. A chalcogenide "nano-spike", designed to transform the incident light adiabatically into the fundamental mode of a 2-mm-long uniform section 1 µm in diameter, is used to achieve high launch efficiencies. The nano-spike is fully encapsulated in a fused silica cladding, protecting it from the environment.
View Article and Find Full Text PDFChalcogenide glasses are based on sulfur, selenium and tellurium elements, and have been studied for several decades regarding different applications. Among them, selenide glasses exhibit excellent infrared transmission in the 1 to 15 µm region. Due to their good thermo-mechanical properties, these glasses could be easily shaped into optical devices such as lenses and optical fibers.
View Article and Find Full Text PDFA compact second-order Stokes Brillouin fiber laser made of microstructured chalcogenide fiber is reported for the first time. This laser required very low pump power for Stokes conversion: 6 mW for first order lasing and only 30 mW for second order lasing with nonresonant pumping. We also show linewidth-narrowing as well as intensity noise reduction for both the 1st and 2nd order Stokes component when compared to that of the pump source.
View Article and Find Full Text PDFWe report on all-optical wavelength conversion of a 56 Gb/s differential quadrature phase shift keying signal and a 42.7 Gb/s on-off keying signal. Wavelength conversion is based on four-wave mixing effect in a 1 m long highly nonlinear GeAsSe chalcogenide fiber.
View Article and Find Full Text PDFRelative intensity noise and frequency noise have been measured for the first time for a single-frequency Brillouin chalcogenide As38Se62 fiber laser. This is also the first demonstration of a compact suspended-core fiber Brillouin laser, which exhibits a low threshold power of 22 mW and a slope efficiency of 26% for nonresonant pumping.
View Article and Find Full Text PDFWe report a chalcogenide suspended-core fiber with ultra-high nonlinearity and low attenuation loss. The glass composition is As(38)Se(62).With a core diameter as small as 1.
View Article and Find Full Text PDFCascaded Raman wavelength shifting up to the fourth order ranging from 2092 to 2450 nm is demonstrated using a nanosecond pump at 1995 nm in a low-loss As(38)Se(62) suspended-core microstructured fiber. These four Stokes shifts are obtained with a low peak power of 11 W, and only 3 W are required to obtain three shifts. The Raman gain coefficient for the fiber is estimated to (1.
View Article and Find Full Text PDFThe aim of this paper is to present an overview of the recent achievements of our group in the fabrication and optical characterizations of As(2)S(3) microstructured optical fibers (MOFs). Firstly, we study the synthesis of high purity arsenic sulfide glasses. Then we describe the use of a versatile process using mechanical drilling for the preparation of preforms and then the drawing of MOFs including suspended core fibers.
View Article and Find Full Text PDFMicrostructured optical fibers (MOFs) are traditionally prepared using the stack and draw technique. In order to avoid the interfaces problems observed in chalcogenide glasses, we have developed a new casting method to prepare the chalcogenide preform. This method allows to reach optical losses around 0.
View Article and Find Full Text PDFWe report significant advances in the fabrication of low loss chalcogenide microstructured optical fiber (MOF). This new method, consisting in molding the glass in a silica cast made of capillaries and capillary guides, allows the development of various designs of fibers, such as suspended core, large core or small core MOFs. After removing the cast in a hydrofluoric acid bath, the preform is drawn and the design is controlled using a system applying differential pressure in the holes.
View Article and Find Full Text PDFWe report the fabrication and characterization of the first guiding chalcogenide As(2)S(3) microstructured optical fibers (MOFs) with a suspended core. At 1.55 microm, the measured losses are approximately 0.
View Article and Find Full Text PDF