Colour agnosia is a disorder that impairs colour knowledge (naming, recognition) despite intact colour perception. Previously, we have identified the first and only-known family with hereditary developmental colour agnosia. The aim of the current study was to explore genomic regions and candidate genes that potentially cause this trait in this family.
View Article and Find Full Text PDFComplete human genome sequencing was used to identify the causative mutation in a family with Pollitt syndrome (MIM #275550), comprising two non-consanguineous parents and their two affected children. The patient's symptoms were reminiscent of the non-photosensitive form of recessively inherited trichothiodystrophy (TTD). A mutation in the TTDN1/C7orf11 gene, a gene that is known to be involved in non-photosensitive TTD, had been excluded by others by Sanger sequencing.
View Article and Find Full Text PDFCockayne syndrome is a multisystem sun-sensitive genetic disorder associated with a specific defect in the ability to perform transcription-coupled repair of active genes after UV irradiation. Two complementation groups (CS-A and CS-B) have been identified, and 80% of patients have been assigned to the CS-B complementation group. We have analyzed the sites of the mutations in the CSB gene in 16 patients, to determine the spectrum of mutations in this gene and to see whether the nature of the mutation correlates with the type and severity of the clinical symptoms.
View Article and Find Full Text PDFDouble-strand DNA break (DSB) repair by homologous recombination occurs through the RAD52 pathway in Saccharomyces cerevisiae. Its biological importance is underscored by the conservation of many RAD52 pathway genes, including RAD54, from fungi to humans. We have analyzed the phenotype of mouse RAD54-/- (mRAD54-/-) cells.
View Article and Find Full Text PDFThe rad21 gene of Schizosaccharomyces pombe is involved in the repair of ionizing radiation-induced DNA double-strand breaks. The isolation of mouse and human putative homologs of rad21 is reported here. Alignment of the predicted amino acid sequence of Rad21 with the mammalian proteins showed that the similarity was distributed across the length of the proteins, with more highly conserved regions at both termini.
View Article and Find Full Text PDFBackground: Homologous recombination is of eminent importance both in germ cells, to generate genetic diversity during meiosis, and in somatic cells, to safeguard DNA from genotoxic damage. The genetically well-defined RAD52 pathway is required for these processes in the yeast Saccharomyces cerevisiae. Genes similar to those in the RAD52 group have been identified in mammals.
View Article and Find Full Text PDFPhilos Trans R Soc Lond B Biol Sci
January 1995
The phenotypic consequences of a nucleotide excision repair (NER) defect in man are apparent from three distinct inborn diseases characterized by hypersensitivity of the skin to ultraviolet light and a remarkable clinical and genetic heterogeneity. These are the prototype repair syndrome, xeroderma pigmentosum (XP) (seven genetic complementation groups, designated XP-A to XP-G), Cockayne's syndrome (two groups: CS-A and CS-B) and PIBIDS, a peculiar photosensitive form of the brittle hair disease trichothiodystrophy (TTD, at least two groups of which one equivalent to XP-D). To investigate the mechanism of NER and to resolve the molecular defect in these NER deficiency diseases we have focused on the cloning and characterization of human DNA repair genes.
View Article and Find Full Text PDFGenetic evidence suggests that the Ku DNA-end-binding protein complex is central to the recombination-based repair of double-strand breaks that protects DNA from radiation and underlies antibody gene rearrangement.
View Article and Find Full Text PDFTranscription-coupled repair (TCR) is a universal sub-pathway of the nucleotide excision repair (NER) system that is limited to the transcribed strand of active structural genes. It accomplishes the preferential elimination of transcription-blocking DNA lesions and permits rapid resumption of the vital process of transcription. A defect in TCR is responsible for the rare hereditary disorder Cockayne syndrome (CS).
View Article and Find Full Text PDFThe RAD52 gene of Saccharomyces cerevisiae is required for recombinational repair of double-strand breaks. Using degenerate oligonucleotides based on conserved amino acid sequences of RAD52 and rad22, its counterpart from Schizosaccharomyces pombe, RAD52 homologs from man and mouse were cloned by the polymerase chain reaction. DNA sequence analysis revealed an open reading frame of 418 amino acids for the human RAD52 homolog and of 420 amino acid residues for the mouse counterpart.
View Article and Find Full Text PDFThe human repair gene ERCC6--a presumed DNA (or RNA) helicase--has recently been found to function specifically in preferential nucleotide excision repair (NER). This NER subpathway is primarily directed towards repair of (the transcribed strand of) active genes. Mutations in the ERCC6 gene are responsible for the human hereditary repair disorder Cockayne's syndrome complementation group B, the most common form of the disease.
View Article and Find Full Text PDFCells from patients with the UV-sensitive nucleotide excision repair disorder Cockayne's syndrome (CS) have a specific defect in preferential repair of lesions from the transcribed strand of active genes. This system permits quick resumption of transcription after UV exposure. Here we report the characterization of ERCC6, a gene involved in preferential repair in eukaryotes.
View Article and Find Full Text PDFWe have cloned the human DNA excision repair gene ERCC6 by virtue of its ability to correct the uv sensitivity of Chinese hamster overy cell mutant UV61. This mutant is a member of complementation group 6 of the nucleotide excision repair-deficient rodent mutants. By means of in situ hybridization and Southern blot analysis of mouse x human somatic cell hybrids, the gene was localized to human chromosome 10q11-q21.
View Article and Find Full Text PDFThe UV-sensitive, nucleotide excision repair-deficient Chinese hamster mutant cell line UV61 was used to identify and clone a correcting human gene, ERCC-6. UV61, belonging to rodent complementation group 6, is only moderately UV sensitive in comparison with mutant lines in groups 1 to 5. It harbors a deficiency in the repair of UV-induced cyclobutane pyrimidine dimers but permits apparently normal repair of (6-4) photoproducts.
View Article and Find Full Text PDFChronic myeloid leukemia (CML) is characterized by the presence of a 210-kD protein (P210bcr-abl) in the cytoplasm of leukemic cells, generated by the reciprocal translocation between chromosome 9 and chromosome 22. Due to this translocation, the abl oncogene is coupled to the bcr gene, forming a new determinant in this protein encoded by the bcr-abl joining region. In the joining region itself, either the bcr exon 2 is coupled to the abl exon 2 (b2-a2), or the bcr exon 3 is coupled to the abl exon 2 (b3-a2).
View Article and Find Full Text PDF