Aeromonas veronii is an emerging bacterial pathogen that causes serious systemic infections in cultured Nile tilapia (Oreochromis niloticus), leading to massive deaths. Therefore, there is an urgent need to identify effective vaccine candidates to control the spread of this emerging disease. TonB-dependent receptor (Tdr) of A.
View Article and Find Full Text PDFThe discovery of novel bioactive compounds produced by microorganisms holds significant potential for the development of therapeutics and agrochemicals. In this study, we conducted genome mining to explore the biosynthetic potential of entomopathogenic bacteria belonging to the genera Xenorhabdus and Photorhabdus. By utilizing next-generation sequencing and bioinformatics tools, we identified novel biosynthetic gene clusters (BGCs) in the genomes of the bacteria, specifically plu00736 and plu00747.
View Article and Find Full Text PDFis the most frequent pathogen affecting fish worldwide. The only known virulent strains of are serotypes O1, O2, and O3. Genetic differences between the serotypes that could shed insight on the evolution and serotype differences of this marine pathogen are unknown.
View Article and Find Full Text PDFThis comparative study investigated the effects of CbXyn10C and Xyn11A on xylooligosaccharide profiles produced from sugarcane bagasse (SCB) and rice straw (RS) and their impact on probiotic growth. Generally, CbXyn10C produced more xylose and a higher total phenolic content than Xyn11A. Interestingly, XOS obtained from SCB with CbXyn10C contained significantly more gallic acid than that produced by Xn11A.
View Article and Find Full Text PDFEdwardsiella ictaluri infects several fish species and protection of the all the susceptible fish hosts from the pathogen using a monovalent vaccine is impossible because the species is composed of host-based genotypes that are genetic, serological and antigenic heterogenous. Here, immunoinformatic approach was employed to design a cross-immunogenic chimeric EiCh protein containing multi-epitopes. The chimeric EiCh protein is composed of 11 B-cell epitopes and 7 major histocompatibility complex class II epitopes identified from E.
View Article and Find Full Text PDFWhite spot syndrome virus (WSSV) is the most virulent pathogen causing high mortality and economic loss in shrimp aquaculture and various crustaceans. Therefore, the understanding of molecular mechanisms of WSSV infection is important to develop effective therapeutics to control the spread of this viral disease. In a previous study, we found that VP37 could bind with shrimp haemocytes through the interaction between its C-terminal domain and heparin-like molecules on the shrimp cells, and this interaction can also be inhibited by sulphated galactan.
View Article and Find Full Text PDFEdwardsiella ictaluri has been considered an important threat for catfish aquaculture industry for more than 4 decades and an emerging pathogen of farmed tilapia but only 9 sequenced genomes were publicly available. We hereby report two new complete genomes of E. ictaluri originated from diseased hybrid red tilapia (Oreochromis sp.
View Article and Find Full Text PDFProtein Expr Purif
August 2021
Infectious spleen and kidney necrosis virus (ISKNV) is a causative agent of high mortality in fish resulting in significant economic loss to the fish industry in many countries. The major capsid protein (MCP) (ORF006) is an important structural component that mediates virus entry into the host cell, therefore it is a good candidate antigen of ISKNV for subunit vaccine development. In this study, MCP of ISKNV was successfully produced in Escherichia coli strain Ril and was purified as the soluble form by refolding recombinant MCP using urea in combination with dialysis process.
View Article and Find Full Text PDFProtein Expr Purif
April 2021
Campylobacteriosis is a disease in humans caused by the infection from Campylobacter spp. Human cases are mainly due to Campylobacter jejuni, although C. coli can cause gastroenteritis in humans as well.
View Article and Find Full Text PDFThe purpose of this study was to gain an insight into the effects of mutation-induced binding pocket tilting of the Xyn11A xylanase from Bacillus firmus K-1 in producing a unique hydrolysis characteristic. In this study, the wildtype Xyn11A and its K40L mutant were compared for their hydrolysis patterns on beechwood xylan and xylooligosaccharides of sizes 2 to 6. According to our thin-layer chromatography experiment, the K40L mutant produced a larger amount of xylotetraose leftover than the wildtype.
View Article and Find Full Text PDFA unique strain of Vibrio harveyi is the causative agent of scale drop and muscle necrosis disease (SDMND) in Asian sea bass (Lates calcarifer). This study investigated the protein profiles of SDMND-causing Vibrio harveyi isolates compared to the reference V. harveyi ATCC 14126 strain.
View Article and Find Full Text PDFThe goal of this study was to identify and biochemically characterize a novel hyperthermostable keratinase from microorganisms for feather waste degradation. Here, a hyperthermophilic keratinase (GacK) gene was chosen based on a search of a sequence database. The selected GacK gene was synthesized, cloned, and successfully expressed without a signal peptide in the system.
View Article and Find Full Text PDFBackground: The consistently increasing reports of bacterial resistance and the reemergence of bacterial epidemics have inspired the health and scientific community to discover new molecules with antibacterial potential continuously. Frog-skin secretions constitute bioactive compounds essential for finding new biopharmaceuticals. The exact antibacterial characterization of dermaseptin related peptides derived from Agalychnis annae, is limited.
View Article and Find Full Text PDFDetection of tilapia lake virus (TiLV) in tilapines is mainly from visceral organs of killed fish. However, lethal sampling might not be viable to broodstock and economically important ornamental cichlids. To contribute towards screening of the virus in asymptomatic infected fish, a subclinically infected population of Nile tilapia adults obtained from a local farm was preliminarily tested to compare different non-lethal sampling methods, for example liver biopsy, gill biopsy, fin clip, mucus, faeces and blood for detection of TiLV.
View Article and Find Full Text PDFSynergistic effect of distal site-directed mutations and molecular mechanisms on the enhanced thermostability of GH11 xylanase from B. firmus Strain K-1 (xyn11A) was investigated through enzyme activity assays and atomistic molecular dynamics (MD) simulation. From the experiment, single N-terminal leucine substitution at K40L caused a significant drop in enzymatic activity.
View Article and Find Full Text PDFViral envelope proteins play an important role in facilitating the attachment of viruses to the surface of host cells. Here, we investigated the binding of White Spot Syndrome Virus (WSSV) VP37 to haemocytes of whiteleg shrimp, Litopenaeus vannamei. Three versions of recombinant VP37 proteins, including full length VP37 (VP37), C-terminal domain VP37 (VP37) and C-terminal domain disrupted VP37 (VP37) were individually expressed and tested for their haemocytes binding ability.
View Article and Find Full Text PDFLocal conformational changes and global unfolding pathways of wildtype xyn11A recombinant and its mutated structures were studied through a series of atomistic molecular dynamics (MD) simulations, along with enzyme activity assays at three incubation temperatures to investigate the effects of mutations at three different sites to the thermostability. The first mutation was to replace an unstable negatively charged residue at a surface beta turn near the active site (D32G) by a hydrophobic residue. The second mutation was to create a disulphide bond (S100C/N147C) establishing a strong connection between an alpha helix and a distal beta hairpin associated with the thermally sensitive Thumb loop, and the third mutation add an extra hydrogen bond (A155S) to the same alpha helix.
View Article and Find Full Text PDFWSSV134 or VP36A protein of white spot syndrome virus was previously reported to be able to reduce apoptosis in Sf-9 cells transfected with caspase of Penaeus monodon (PmCasp). The protein was therefore believed to have a role in supporting the survival of WSSV inside the host cells during infection. However, the anti-apoptosis activity of WSSV134 involved in the inhibition of PmCasp is still unclear.
View Article and Find Full Text PDFICP35 is a non-structural protein from White spot syndrome virus believed to be important in viral replication. Since ICP35 was found to localize in the host nucleus, it has been speculated that the function of ICP35 might be involved in the interaction of DNA. In this study, we overexpressed, purified and characterized ICP35.
View Article and Find Full Text PDFApoptosis is an essential mechanism in multicellular organisms which results in the induction of cell death. Important apoptotic proteins, including high temperature requirement A2 (PmHtrA2; also known as serine protease), inhibitor of apoptosis protein (PmIAP) and Pm caspase, have been previously identified in black tiger shrimp, Penaeus monodon. However, the relevance among these proteins in apoptosis regulation has not been established yet in shrimp.
View Article and Find Full Text PDFWhite spot syndrome virus (WSSV) is a major causative agent in shrimp farming. Consequently, RNAi technology is an effective strategy to prevent WSSV infection in shrimp especially dsRNA targeting to rr2 of WSSV. In an effort to develop dsRNA expression in shrimp for control of WSSV infection, we developed a recombinant baculovirus expressing recombinant VP28 as the gene delivery system to carry a gene encoding dsRNA specific to rr2 for triggering the RNAi process in shrimp.
View Article and Find Full Text PDFHtrA2 is an apoptosis-activating gene that enhances the apoptotic process by preventing the formation of the IAP-caspase complex, thereby freeing caspase to trigger the apoptosis pathway. In this study, we presented the full-length cDNA sequence of HtrA2 from Litopenaeus vannamei (LvHtrA2). The full-length LvHtrA2 was 1335 bp, encoding 444 amino acids.
View Article and Find Full Text PDFBackground: RNA interference (RNAi) is a specific and effective approach for inhibiting viral replication by introducing double-stranded (ds)RNA targeting the viral gene. In this study, we employed a combinatorial approach to interfere multiple gene functions of white spot syndrome virus (WSSV), the most lethal shrimp virus, using a single-batch of dsRNA, so-called "multi-WSSV dsRNA." A co-cultivation of RNase-deficient E.
View Article and Find Full Text PDFYellow head virus (YHV) is one of the causative agents of shrimp viral disease. The prevention of YHV infection in shrimp has been developed by various methods, but it is still insufficient to protect the mass mortality in shrimp. New approaches for the antiviral drug development for viral infection have been focused on the inhibition of several potent viral enzymes, and thus the YHV protease is one of the interesting targets for developing antiviral drugs according to the pivotal roles of the enzyme in an early stage of viral propagation.
View Article and Find Full Text PDFHtrA2 is an apoptosis-activating protein to enhance the apoptotic process by preventing the formation of the IAP-caspase complex, thus freeing caspase to trigger the apoptosis pathway. Here, we presented the full-length sequence of HtrA2 from the black tiger shrimp (PmHtrA2). The full-length PmHtrA2 transcript was 1403 bp with a 1338 bp open reading frame encoding 445 amino acids and contains 5 conserved domains, namely, a mitochondrial targeting signal (MTS), a transmembrane (TM) domain, an IAP-binding motif (IBM), a serine protease domain, and a PDZ domain normally found in HtrA2 proteins of other organisms.
View Article and Find Full Text PDF