Publications by authors named "Tritia Yamasaki"

We sought to design a data visualization platform to represent the Movement Disorder Society- Unified Parkinson's Disease Rating Scale (MDS-UPDRS) item scores in an easy-to-use display without modification of the raw data or summary scores. Score items for Parts I, II, and IV were arranged as separate inline blocks, while Part III item blocks were arranged in an anatomical fashion. A color scale was created to represent symptom severity and changes observed from one exam to another.

View Article and Find Full Text PDF

Parkinson's disease (PD) and essential tremor (ET) are two common adult-onset tremor disorders in which prevalence increases with age. PD is a neurodegenerative condition with progressive disability. In ET, neurodegeneration is not an established etiology.

View Article and Find Full Text PDF

Background: The efficacy of deep brain stimulation (DBS) and dopaminergic therapy is known to decrease over time. Hence, a new investigational approach combines implanting autologous injury-activated peripheral nerve grafts (APNG) at the time of bilateral DBS surgery to the globus pallidus interna.

Objectives: In a study where APNG was unilaterally implanted into the substantia nigra, we explored the effects on clinical gait and balance assessments over two years in 14 individuals with Parkinson's disease.

View Article and Find Full Text PDF

The aggregation and deposition of α-synuclein (αS) are major pathologic features of Parkinson's disease, dementia with Lewy bodies, and other α-synucleinopathies. The propagation of αS pathology in the brain plays a key role in the onset and progression of clinical phenotypes. Thus, there is increasing interest in developing strategies that attenuate αS aggregation and propagation.

View Article and Find Full Text PDF

Misfolding, aggregation and deposition of α-synuclein (α-syn) are major pathologic characteristics of Parkinson's disease (PD) and the related synucleinopathy, multiple system atrophy (MSA). The spread of α-syn pathology across brain regions is thought to play a key role in the onset and progression of clinical phenotypes. Thus, there is increasing interest in developing strategies that target and attenuate α-syn aggregation and spread.

View Article and Find Full Text PDF

The gold standard for a definitive diagnosis of Parkinson disease (PD) is the pathologic finding of aggregated α-synuclein into Lewy bodies and for Alzheimer disease (AD) aggregated amyloid into plaques and hyperphosphorylated tau into tangles. Implicit in this clinicopathologic-based nosology is the assumption that pathologic protein aggregation at autopsy reflects pathogenesis at disease onset. While these aggregates may in exceptional cases be on a causal pathway in humans (e.

View Article and Find Full Text PDF

Parkinson's disease (PD) and multiple system atrophy (MSA) are distinct clinical syndromes characterized by the pathological accumulation of α-synuclein (α-syn) protein fibrils in neurons and glial cells. These disorders and other neurodegenerative diseases may progress via prion-like mechanisms. The prion model of propagation predicts the existence of "strains" that link pathological aggregate structure and neuropathology.

View Article and Find Full Text PDF

Transcellular propagation of protein aggregates, or proteopathic seeds, may drive the progression of neurodegenerative diseases in a prion-like manner. In tauopathies such as Alzheimer's disease, this model predicts that tau seeds propagate pathology through the brain via cell-cell transfer in neural networks. The critical role of tau seeding activity is untested, however.

View Article and Find Full Text PDF

Background/aims: Accurate diagnosis of sporadic early-onset Alzheimer's disease (EOAD) can be challenging, and cerebrospinal fluid (CSF) biomarkers may assist in this process. We compared CSF indices between three EOAD subtypes: amnestic, logopenic progressive aphasia (LPA), and posterior cortical atrophy (PCA).

Methods: We identified 21 amnestic EOAD, 20 LPA, and 12 PCA patients with CSF data, which included amyloid β1-42 (Aβ42), total tau (t-tau), phospho-tau181 (p-tau), and Aβ42/t-tau index (ATI) levels.

View Article and Find Full Text PDF

Neural stem cell (NSC) transplantation represents an unexplored approach for treating neurodegenerative disorders associated with cognitive decline such as Alzheimer disease (AD). Here, we used aged triple transgenic mice (3xTg-AD) that express pathogenic forms of amyloid precursor protein, presenilin, and tau to investigate the effect of neural stem cell transplantation on AD-related neuropathology and cognitive dysfunction. Interestingly, despite widespread and established Ass plaque and neurofibrillary tangle pathology, hippocampal neural stem cell transplantation rescues the spatial learning and memory deficits in aged 3xTg-AD mice.

View Article and Find Full Text PDF

Cell cycle proteins are elevated in the brain of patients and in transgenic models of Alzheimer's disease (AD), suggesting that aberrant cell cycle re-entry plays a key role in this disorder. However, the precise relationship between cell cycle reactivation and the hallmarks of AD, amyloid-beta (Abeta) plaques and tau-laden neurofibrillary tangles, remains unclear. We sought to determine whether cell cycle reactivation initiates in direct response to Abeta and tau accumulation or whether it occurs as a downstream consequence of neuronal death pathways.

View Article and Find Full Text PDF

Neuronal loss is a major pathological outcome of many common neurological disorders, including ischemia, traumatic brain injury, and Alzheimer disease. Stem cell-based approaches have received considerable attention as a potential means of treatment, although it remains to be determined whether stem cells can ameliorate memory dysfunction, a devastating component of these disorders. We generated a transgenic mouse model in which the tetracycline-off system is used to regulate expression of diphtheria toxin A chain.

View Article and Find Full Text PDF

Inflammation is a critical component of the pathogenesis of Alzheimer's disease (AD). Although not an initiator of this disorder, inflammation nonetheless plays a pivotal role as a driving force that can modulate the neuropathology. Here, we characterized the time course of microglia activation in the brains of a transgenic model of AD (3xTg-AD) and discerned its relationship to the plaque and tangle pathology.

View Article and Find Full Text PDF

Inflammation is a critical component of the pathogenesis of Alzheimer's disease (AD), consisting of the activation of both microglia and astrocytes. Activated microglia and reactive astrocytes are found in and around extraneuronal amyloid-beta plaques and are thought to facilitate the clearance of these deposits from the brain parenchyma. However, mounting evidence indicates that chronic activation of microglia, presumably via the secretion of cytokines and reactive molecules, may exacerbate plaque pathology as well as enhance the hyperphosphorylation of tau and the subsequent development of neurofibrillary tangles.

View Article and Find Full Text PDF

Inclusion body myositis (IBM), the most common age-related muscle disease in the elderly population, is an incurable disorder leading to severe disability. Sporadic IBM has an unknown etiology, although affected muscle fibers are characterized by many of the pathobiochemical alterations traditionally associated with neurodegenerative brain disorders such as Alzheimer's disease. Accumulation of the amyloid-beta peptide, which is derived from proteolysis of the larger amyloid-beta precursor protein (betaAPP), seems to be an early pathological event in Alzheimer's disease and also in IBM, where in the latter, it predominantly occurs intracellularly within affected myofibers.

View Article and Find Full Text PDF