Publications by authors named "Tristano Pancani"

Behavioural time scale plasticity (BTSP) is non-Hebbian plasticity induced by integrating presynaptic and postsynaptic components separated by a behaviourally relevant time scale (seconds). BTSP in hippocampal CA1 neurons underlies place cell formation. However, the molecular mechanisms that enable synapse-specific plasticity on a behavioural time scale are unknown.

View Article and Find Full Text PDF

Huntington's disease (HD) is a progressive, neurodegenerative disease caused by a CAG triplet expansion in huntingtin. Although corticostriatal dysfunction has long been implicated in HD, the determinants and pathway specificity of this pathophysiology are not fully understood. Here, using a male zQ175 knock-in mouse model of HD we carry out optogenetic interrogation of intratelencephalic and pyramidal tract synapses with principal striatal spiny projection neurons (SPNs).

View Article and Find Full Text PDF

Cholinergic regulation of dopaminergic inputs into the striatum is critical for normal basal ganglia (BG) function. This regulation of BG function is thought to be primarily mediated by acetylcholine released from cholinergic interneurons (ChIs) acting locally in the striatum. We now report a combination of pharmacological, electrophysiological, optogenetic, chemogenetic, and functional magnetic resonance imaging studies suggesting extra-striatal cholinergic projections from the pedunculopontine nucleus to the substantia nigra pars reticulata (SNr) act on muscarinic acetylcholine receptor subtype 4 (M) to oppose cAMP-dependent dopamine receptor subtype 1 (D) signaling in presynaptic terminals of direct pathway striatal spiny projections neurons.

View Article and Find Full Text PDF

Giant, aspiny cholinergic interneurons (ChIs) have long been known to be key nodes in the striatal circuitry controlling goal-directed actions and habits. In recent years, new experimental approaches, like optogenetics and monosynaptic rabies virus mapping, have expanded our understanding of how ChIs contribute to the striatal activity underlying action selection and the interplay of dopaminergic and cholinergic signaling. These approaches also have begun to reveal how ChI function is distorted in disease states affecting the basal ganglia, like Parkinson's disease (PD).

View Article and Find Full Text PDF

Mutations that lead to Huntington's disease (HD) result in increased transmission at glutamatergic corticostriatal synapses at early presymptomatic stages that have been postulated to set the stage for pathological changes and symptoms that are observed at later ages. Based on this, pharmacological interventions that reverse excessive corticostriatal transmission may provide a novel approach for reducing early physiological changes and motor symptoms observed in HD. We report that activation of the M4 subtype of muscarinic acetylcholine receptor reduces transmission at corticostriatal synapses and that this effect is dramatically enhanced in presymptomatic YAC128 HD and BACHD relative to wild-type mice.

View Article and Find Full Text PDF

The striatum is the main input station of the basal ganglia and is extensively involved in the modulation of motivated behavior. The information conveyed to this subcortical structure through glutamatergic projections from the cerebral cortex and thalamus is processed by the activity of several striatal neuromodulatory systems including the cholinergic system. Acetylcholine potently modulates glutamate signaling in the striatum via activation of muscarinic receptors (mAChRs).

View Article and Find Full Text PDF

The prevalence of obesity and type 2 diabetes increases with age. Despite this, few studies have examined these conditions simultaneously in aged animals, and fewer studies have measured the impact of these conditions on brain function. Using an established animal model of brain aging (F344 rats), we investigated whether a high-fat diet (HFD) exacerbates cognitive decline and the hippocampal calcium-dependent afterhyperpolarization (a marker of age-dependent calcium dysregulation).

View Article and Find Full Text PDF

The M(1) muscarinic acetylcholine receptor is thought to play an important role in memory and cognition, making it a potential target for the treatment of Alzheimer's disease (AD) and schizophrenia. Moreover, M(1) interacts with BACE1 and regulates its proteosomal degradation, suggesting selective M(1) activation could afford both palliative cognitive benefit as well as disease modification in AD. A key challenge in targeting the muscarinic acetylcholine receptors is achieving mAChR subtype selectivity.

View Article and Find Full Text PDF

Thiazolidinediones (TZDs) are agonists at peroxisome proliferator-activated gamma-type (PPAR-γ) receptors and are used clinically for the treatment of type 2 diabetes where they have been shown to reestablish insulin sensitivity, improve lipid profiles, and reduce inflammation. Recent work also suggests that TZDs may be beneficial in Alzheimer's disease (AD), ameliorating cognitive decline early in the disease process. However, there have been only a few studies identifying mechanisms through which cognitive benefits may be exerted.

View Article and Find Full Text PDF

Increased function of neuronal L-type voltage-sensitive Ca(2+) channels (L-VSCCs) is strongly linked to impaired memory and altered hippocampal synaptic plasticity in aged rats. However, no studies have directly assessed L-VSCC function in any of the common mouse models of Alzheimer's disease where neurologic deficits are typically more robust. Here, we used cell-attached patch-clamp recording techniques to measure L-VSCC activity in CA1 pyramidal neurons of partially dissociated hippocampal "zipper" slices prepared from 14-month-old wild-type mice and memory-impaired APP/PS1 double knock-in mice.

View Article and Find Full Text PDF

Neuronal Ca(2+) dyshomeostasis associated with cognitive impairment and mediated by changes in several Ca(2+) sources has been seen in animal models of both aging and diabetes. In the periphery, dysregulation of intracellular Ca(2+) signals may contribute to the development of insulin resistance. In the brain, while it is well-established that type 2 diabetes mellitus is a risk factor for the development of dementia in the elderly, it is not clear whether Ca(2+) dysregulation might also affect insulin sensitivity and glucose utilization.

View Article and Find Full Text PDF

Background: Thiazolidinediones (TZDs) activate peroxisome proliferator-activated receptor gamma (PPARgamma) and are used clinically to help restore peripheral insulin sensitivity in Type 2 diabetes (T2DM). Interestingly, long-term treatment of mouse models of Alzheimer's disease (AD) with TZDs also has been shown to reduce several well-established brain biomarkers of AD including inflammation, oxidative stress and Abeta accumulation. While TZD's actions in AD models help to elucidate the mechanisms underlying their potentially beneficial effects in AD patients, little is known about the functional consequences of TZDs in animal models of normal aging.

View Article and Find Full Text PDF

Type 2 diabetes mellitus is a metabolic disorder characterized by hyperglycemia and is especially prevalent in the elderly. Because aging is a risk factor for type 2 diabetes mellitus, and insulin resistance may contribute to the pathogenesis of Alzheimer's disease (AD), anti-diabetic agents (thiazolidinediones-TZDs) are being studied for the treatment of cognitive decline associated with AD. These agents normalize insulin sensitivity in the periphery and can improve cognition and verbal memory in AD patients.

View Article and Find Full Text PDF

Activation of glutamate receptors has been proposed as a key factor in the induction of ischemic tolerance. We used organotypic rat hippocampal slices exposed to 30 min oxygen-glucose deprivation (OGD) to evaluate postischemic pyramidal cell death in the CA1 subregion. In this model, 10 min exposure to OGD 24 h before the exposure to toxic OGD was not lethal and reduced the subsequent OGD neurotoxicity by approximately 53% (ischemic preconditioning).

View Article and Find Full Text PDF

Pharmacological manipulation of gene expression is considered a promising avenue to reduce postischemic brain damage. Histone deacetylases (HDACs) play a central role in epigenetic regulation of transcription, and inhibitors of HDACs are emerging as neuroprotective agents. In this study, we investigated the effect of the HDAC inhibitor suberoylanilide hydroxamic acid (SAHA) on histone acetylation in control and ischemic mouse brain.

View Article and Find Full Text PDF

Background: Propofol (2,6-diisopropylphenol) has been shown to attenuate neuronal injury in a number of experimental conditions, but studies in models of cerebral ischemia have yielded conflicting results. Moreover, the mechanisms involved in its neuroprotective effects are yet unclear.

Methods: The authors evaluated the neuroprotective effects of propofol in rat organotypic hippocampal slices exposed to oxygen-glucose deprivation, an in vitro model of cerebral ischemia.

View Article and Find Full Text PDF