Using fluorescence correlation spectroscopy, we show that the diffusive movements of catalase enzyme molecules increase in the presence of the substrate, hydrogen peroxide, in a concentration-dependent manner. Employing a microfluidic device to generate a substrate concentration gradient, we show that both catalase and urease enzyme molecules spread toward areas of higher substrate concentration, a form of chemotaxis at the molecular scale. Using glucose oxidase and glucose to generate a hydrogen peroxide gradient, we induce the migration of catalase toward glucose oxidase, thereby showing that chemically interconnected enzymes can be drawn together.
View Article and Find Full Text PDFBlood flow-associated shear stress causes physiological and pathophysiological biochemical processes in endothelial cells that may be initiated by alterations in plasma membrane lipid domains characterized as liquid-ordered (l(o)), such as rafts or caveolae, or liquid-disordered (l(d)). To test for domain-dependent shear sensitivity, we used time-correlated single photon counting instrumentation to assess the photophysics and dynamics of the domain-selective lipid analogues DiI-C(12) and DiI-C(18) in endothelial cells subjected to physiological fluid shear stress. Under static conditions, DiI-C(12) fluorescence lifetime was less than DiI-C(18) lifetime and the diffusion coefficient of DiI-C(12) was greater than the DiI-C(18) diffusion coefficient, confirming that DiI-C(12) probes l(d), a more fluid membrane environment, and DiI-C(18) probes the l(o) phase.
View Article and Find Full Text PDFEncapsulation of imaging agents and drugs in calcium phosphate nanoparticles (CPNPs) has potential as a nontoxic, bioresorbable vehicle for drug delivery to cells and tumors. The objectives of this study were to develop a calcium phosphate nanoparticle encapsulation system for organic dyes and therapeutic drugs so that advanced fluoresence methods could be used to assess the efficiency of drug delivery and possible mechanisms of nanoparticle bioabsorption. Highly concentrated CPNPs encapsulating a variety of organic fluorophores were successfully synthesized.
View Article and Find Full Text PDFCells respond to forces through coordinated biochemical signaling cascades that originate from changes in single-molecule structure and dynamics and proceed to large-scale changes in cellular morphology and protein expression. To enable experiments that determine the molecular basis of mechanotransduction over these large time and length scales, we construct a confocal molecular dynamics microscope (CMDM). This system integrates total-internal-reflection fluorescence (TIRF), epifluorescence, differential interference contrast (DIC), and 3-D deconvolution imaging modalities with time-correlated single-photon counting (TCSPC) instrumentation and an optical trap.
View Article and Find Full Text PDF