Pultrusion is a high-volume manufacturing process for Fibre-Reinforced Polymer (FRP) composites. It requires careful tuning and optimisation of process parameters to obtain the maximum production rate. The present work focuses on the correlation between the set die temperatures of 80 °C, 100 °C, 120 °C, and 140 °C and the resin cure state at constant pull speeds.
View Article and Find Full Text PDFThermoset polymer composites have increased in use across multiple industries, with recent applications consisting of high-complexity and large-scale parts. As applications expand, the emphasis on accurate process-monitoring techniques has increased, with a variety of in situ cure-monitoring sensors being investigated by various research teams. To date, a wide range of data analysis techniques have been used to correlate data collected from thermocouple, dielectric, ultrasonic, and fibre-optic sensors to information on the material cure state.
View Article and Find Full Text PDFHollow box pultruded fibre-reinforced polymers (PFRP) profiles are increasingly used as structural elements in many structural applications due to their cost-effective manufacturing process, excellent mechanical properties-to-weight ratios, and superior corrosion resistance. Despite the extensive usage of PFRP profiles, there is still a lack of knowledge in the design for manufacturing against local buckling on the structural level. In this review, the local buckling of open-section (I, C, Z, L, T shapes) and closed-section (box) FRP structural shapes was systematically compared.
View Article and Find Full Text PDF