Publications by authors named "Tristan Shaffer"

Background: Identifying a circulating biomarker predictive of immune checkpoint inhibitor (ICI) benefit in patients with small cell lung cancer (SCLC) remains an unmet need. Characteristics of peripheral and intratumoral T-cell receptor (TCR) repertoires have been shown to predict clinical outcomes in non-small cell lung cancer (NSCLC). Recognizing a knowledge gap, we sought to characterize circulating TCR repertoires and their relationship with clinical outcomes in SCLC.

View Article and Find Full Text PDF

Introduction: Remote consent and enrollment offer a unique opportunity to provide rare cancer populations with access to clinical research. The genomic analysis of plasma cell-free DNA (cfDNA) permits remote characterization of the cancer genome. We hypothesized we could leverage these approaches to remotely study drug resistance in patients with metastatic -positive NSCLC.

View Article and Find Full Text PDF

Introduction: Blood-based next-generation sequencing assays of circulating tumor DNA (ctDNA) have the ability to detect tumor-associated mutations in patients with SCLC. We sought to characterize the relationship between ctDNA mean variant allele frequency (VAF) and radiographic total-body tumor volume (TV) in patients with SCLC.

Methods: We identified matched blood draws and computed tomography (CT) or positron emission tomography (PET) scans within a prospective SCLC blood banking cohort.

View Article and Find Full Text PDF

Objectives: Liquid biopsy for plasma circulating tumor DNA (ctDNA) next-generation sequencing (NGS) can detect ALK fusions, though data on clinical utility of this technology in the real world is limited.

Materials And Methods: Patients with lung cancer without known oncogenic drivers or who had acquired resistance to therapy (n = 736) underwent prospective plasma ctDNA NGS. A subset of this cohort (n = 497) also had tissue NGS.

View Article and Find Full Text PDF

Introduction: Most patients (70%) with limited-stage SCLC (LS-SCLC) who are treated with curative-intent therapy suffer disease relapse and cancer-related death. We evaluated circulating tumor DNA (ctDNA) as a predictor of disease relapse and death after definitive therapy in patients with LS-SCLC.

Methods: In our previous work, we developed a plasma-based ctDNA assay to sequence 14 genes (, , , , , , , , , , and ) that are frequently mutated in SCLC.

View Article and Find Full Text PDF

Introduction: Despite initial effectiveness of ALK receptor tyrosine kinase inhibitors (TKIs) in patients with ALK+ NSCLC, therapeutic resistance will ultimately develop. Serial tracking of genetic alterations detected in circulating tumor DNA (ctDNA) can be an informative strategy to identify response and resistance. This study evaluated the utility of analyzing ctDNA as a function of response to ensartinib, a potent second-generation ALK TKI.

View Article and Find Full Text PDF

Background: Liquid biopsy for plasma circulating tumor DNA (ctDNA) next-generation sequencing (NGS) is commercially available and increasingly adopted in clinical practice despite a paucity of prospective data to support its use.

Methods: Patients with advanced lung cancers who had no known oncogenic driver or developed resistance to current targeted therapy (n = 210) underwent plasma NGS, targeting 21 genes. A subset of patients had concurrent tissue NGS testing using a 468-gene panel (n = 106).

View Article and Find Full Text PDF

Purpose: Rh antigens can provoke severe alloimmune reactions, particularly in high-risk transfusion contexts, such as sickle cell disease. Rh antigens are encoded by the paralogs, RHD and RHCE, located in one of the most complex genetic loci. Our goal was to characterize RH genetic variation in multi-ethnic cohorts, with the focus on detecting RH structural variation (SV).

View Article and Find Full Text PDF

Genome-wide association studies suggest that common genetic variants explain only a modest fraction of heritable risk for common diseases, raising the question of whether rare variants account for a significant fraction of unexplained heritability. Although DNA sequencing costs have fallen markedly, they remain far from what is necessary for rare and novel variants to be routinely identified at a genome-wide scale in large cohorts. We have therefore sought to develop second-generation methods for targeted sequencing of all protein-coding regions ('exomes'), to reduce costs while enriching for discovery of highly penetrant variants.

View Article and Find Full Text PDF

Background/aims: Lp(a) levels have long been recognized as a potential risk factor for coronary heart disease that is almost completely under genetic control. Much of the genetics impacting Lp(a) levels has been attributed to the highly polymorphic LPA kringle IV-2 copy number variant, and most of the variance in Lp(a) levels in populations of European-descent is inversely correlated with kringle IV copy number. However, less of the variance is explained in African-descent populations for the same structural variation.

View Article and Find Full Text PDF

Chromosome 14 is one of five acrocentric chromosomes in the human genome. These chromosomes are characterized by a heterochromatic short arm that contains essentially ribosomal RNA genes, and a euchromatic long arm in which most, if not all, of the protein-coding genes are located. The finished sequence of human chromosome 14 comprises 87,410,661 base pairs, representing 100% of its euchromatic portion, in a single continuous segment covering the entire long arm with no gaps.

View Article and Find Full Text PDF