The pig was introduced more than 20 years ago in drug development following attempts of finding a species that shares better homology with human than the dog, based on biophysiological parameters. However, miniaturization, standardized breeding, and health status control were required before the pig could find a broader than niche application in pharmaceutical industry. During the years of experience with minipigs in pharmaceutical research and the science evolving rapidly, the selection of a nonrodent animal species for preclinical safety testing became primarily driven by pharmacological (target expression homologous function), pharmacokinetic, and biophysiological considerations.
View Article and Find Full Text PDFThe synthesis and biophysical characterization of four prodrug ether phospholipid conjugates are described. The lipids are prepared from the anticancer drug chlorambucil and have C16 and C18 ether chains with phosphatidylcholine or phosphatidylglycerol headgroups. All four prodrugs have the ability to form unilamellar liposomes (86-125 nm) and are hydrolyzed by phospholipase A(2), resulting in chlorambucil release.
View Article and Find Full Text PDFCombining supramolecular self-assembly of lipids with enzymatic triggered DNA interfacial polymerization allows construction of composite nanocapsules. Covalent grafting of oligonucleotides functionalizes the surface of liposomes. Subsequent addition of an enzyme called terminal deoxynucleotidyl transferase elongates the single-stranded DNA.
View Article and Find Full Text PDFConversion of a DNA chip to a nanocapsule array was performed by grafting on a liposome an oligonucleotide complementary to an oligonucleotide bound to the array. Each liposome may be loaded by a soluble molecule or may present a hydrophobic or amphiphilic molecule inserted in its wall. To detect liposomes on the chip, we used fluorescent dyes encapsulated in the liposome internal volume or fluorescent lipids.
View Article and Find Full Text PDFBackground: Size exclusion chromatography is the method of choice for separating free from liposome-encapsulated molecules. However, if the column is not presaturated with lipids this type of chromatography causes a significant loss of lipid material. To date, the mechanism of lipid retention is poorly understood.
View Article and Find Full Text PDFAmphiphilic ABA triblock copolymers, such as poly(2-methyloxazoline)-block-poly(dimethylsiloxan)-block-poly(2-methyloxazoline) (PMOXA-PDMS-PMOXA), form vesicular structures. Here, the interaction of these ABA molecules with lipids is investigated by electron microscopy, fluorescence spectroscopy, light scattering, and differential scanning calorimetry. Our observations suggest the formation of homogeneous mixed polymer-lipid composites, independent of preparation method, i.
View Article and Find Full Text PDFIEEE Trans Nanobioscience
March 2004
Here we present three different types of mechanically stable nanometer-sized hollow capsules. The common point of the currently developed systems in our laboratory is that they are liposome based. Biomolecules can be used to functionalize lipid vesicles to create a new type of intelligent material.
View Article and Find Full Text PDF