Background: Self-supervised pre-training of deep learning models with contrastive learning is a widely used technique in image analysis. Current findings indicate a strong potential for contrastive pre-training on medical images. However, further research is necessary to incorporate the particular characteristics of these images.
View Article and Find Full Text PDFJ Med Imaging (Bellingham)
July 2023
Purpose: Semantic segmentation is one of the most significant tasks in medical image computing, whereby deep neural networks have shown great success. Unfortunately, supervised approaches are very data-intensive, and obtaining reliable annotations is time-consuming and expensive. Sparsely labeled approaches, such as bounding boxes, have shown some success in reducing the annotation time.
View Article and Find Full Text PDF