We present Clinica (www.clinica.run), an open-source software platform designed to make clinical neuroscience studies easier and more reproducible.
View Article and Find Full Text PDFWhite matter bundles linking gray matter nodes are key anatomical players to fully characterize associations between brain systems and cognitive functions. Here we used a multivariate lesion inference approach grounded in coalitional game theory (multiperturbation Shapley value analysis, MSA) to infer causal contributions of white matter bundles to visuospatial orienting of attention. Our work is based on the characterization of the lesion patterns of 25 right hemisphere stroke patients and the causal analysis of their impact on three neuropsychological tasks: line bisection, letter cancellation, and bells cancellation.
View Article and Find Full Text PDFDifferent non-invasive neuroimaging modalities and multi-level analysis of human connectomics datasets yield a great amount of heterogeneous data which are hard to integrate into an unified representation. Biomedical ontologies can provide a suitable integrative framework for domain knowledge as well as a tool to facilitate information retrieval, data sharing and data comparisons across scales, modalities and species. Especially, it is urgently needed to fill the gap between neurobiology and in vivo human connectomics in order to better take into account the reality highlighted in Magnetic Resonance Imaging (MRI) and relate it to existing brain knowledge.
View Article and Find Full Text PDFPurpose: Because of the motor function of the precentral area, the connections of the primary motor cortex by white matter fiber bundles have been widely studied in diffusion tensor imaging (DTI). Nevertheless, the connections within the primary motor cortex have yet to be explored. We have studied the connectivity between the different regions of the precentral gyrus in a population of subjects.
View Article and Find Full Text PDFIntroduction: Diffusion tensor imaging and tractography allow studying white matter fiber bundles in the human brain in vivo. Electrophysiological studies and postmortem dissections permit improving our knowledge about the short association fibers connecting the pre- and postcentral gyri. The aim of this study was first to extract and analyze the features of these short fiber bundles and secondly to analyze their asymmetry according to the subjects' handedness.
View Article and Find Full Text PDF