Publications by authors named "Tristan Mary-Huard"

Elucidating the genetic components of plant genotype-by-environment interactions is of key importance in the context of increasing climatic instability, diversification of agricultural practices and pest pressure due to phytosanitary treatment limitations. The genotypic response to environmental stresses can be investigated through multi-environment trials (METs). However, genome-wide association studies (GWAS) of MET data are significantly more complex than that of single environments.

View Article and Find Full Text PDF

Classical genomic prediction approaches rely on statistical associations between traits and markers rather than their biological significance. Biologically informed selection of genomic regions can help prioritize polymorphisms by considering underlying biological processes, making prediction models robust and accurate. Gene ontology (GO) terms can be used for this purpose, and the information can be integrated into genomic prediction models through marker categorization.

View Article and Find Full Text PDF

Predicting phenotypes from a combination of genetic and environmental factors is a grand challenge of modern biology. Slight improvements in this area have the potential to save lives, improve food and fuel security, permit better care of the planet, and create other positive outcomes. In 2022 and 2023 the first open-to-the-public Genomes to Fields (G2F) initiative Genotype by Environment (GxE) prediction competition was held using a large dataset including genomic variation, phenotype and weather measurements and field management notes, gathered by the project over nine years.

View Article and Find Full Text PDF
Article Synopsis
  • - Predicting how genetic and environmental factors influence traits (phenotypes) is a critical challenge in biology, with potential benefits like improved health, food security, and environmental care.
  • - The Genomes to Fields (G2F) initiative hosted a competition in 2022 and 2023, inviting global participants from various disciplines to develop models using a comprehensive dataset gathered over nine years, including genetic and environmental data.
  • - Winning methods combined machine learning with traditional breeding techniques, showcasing a variety of approaches such as quantitative genetics and deep learning, indicating that no single strategy was universally superior in predicting phenotypes in this context.
View Article and Find Full Text PDF

Transcriptomics and proteomics information collected on a platform can predict additive and non-additive effects for platform traits and additive effects for field traits. The effects of climate change in the form of drought, heat stress, and irregular seasonal changes threaten global crop production. The ability of multi-omics data, such as transcripts and proteins, to reflect a plant's response to such climatic factors can be capitalized in prediction models to maximize crop improvement.

View Article and Find Full Text PDF

The ECPGR European Evaluation Network (EVA) for Maize involves genebanks, research institutions, and private breeding companies from nine countries focusing on the valorization of maize genetic resources across Europe. This study describes a diverse collection of 626 local landraces and traditional varieties of maize ( L.) from nine European genebanks, including criteria for selection of the collection and its genetic and phenotypic diversity.

View Article and Find Full Text PDF

We validated the efficiency of genomic predictions calibrated on sparse factorial training sets to predict the next generation of hybrids and tested different strategies for updating predictions along generations. Genomic selection offers new prospects for revisiting hybrid breeding schemes by replacing extensive phenotyping of individuals with genomic predictions. Finding the ideal design for training genomic prediction models is still an open question.

View Article and Find Full Text PDF

Implementing a collaborative pre-breeding multi-parental population efficiently identifies promising donor x elite pairs to enrich the flint maize elite germplasm. Genetic diversity is crucial for maintaining genetic gains and ensuring breeding programs' long-term success. In a closed breeding program, selection inevitably leads to a loss of genetic diversity.

View Article and Find Full Text PDF

An original GWAS model integrating the ancestry of alleles was proposed and allowed the detection of background specific additive and dominance QTLs involved in heterotic group complementarity and hybrid performance. Maize genetic diversity is structured into genetic groups selected and improved relative to each other. This process increases group complementarity and differentiation over time and ensures that the hybrids produced from inter-group crosses exhibit high performances and heterosis.

View Article and Find Full Text PDF

Epistasis, commonly defined as interaction effects between alleles of different loci, is an important genetic component of the variation of phenotypic traits in natural and breeding populations. In addition to its impact on variance, epistasis can also affect the expected performance of a population and is then referred to as directional epistasis. Before the advent of genomic data, the existence of epistasis (both directional and non-directional) was investigated based on complex and expensive mating schemes involving several generations evaluated for a trait of interest.

View Article and Find Full Text PDF

Background: Systems biology leveraging multi-OMICs technologies, is rapidly advancing development of precision therapies and matching patients to targeted therapies, leading to improved responses. A new pillar of precision oncology lies in the power of chemogenomics to discover drugs that sensitizes malignant cells to other therapies. Here, we test a chemogenomic approach using epigenomic inhibitors (epidrugs) to reset patterns of gene expression driving the malignant behavior of pancreatic tumors.

View Article and Find Full Text PDF

Genetic progress of crop plants is required to face human population growth and guarantee production stability in increasingly unstable environmental conditions. Breeding is accompanied by a loss in genetic diversity, which hinders sustainable genetic gain. Methodologies based on molecular marker information have been developed to manage diversity and proved effective in increasing long-term genetic gain.

View Article and Find Full Text PDF

Individuals within a common environment experience variations due to unique and non-identifiable micro-environmental factors. Genetic sensitivity to micro-environmental variation (i.e.

View Article and Find Full Text PDF

Landraces, that is, traditional varieties, have a large diversity that is underexploited in modern breeding. A novel DNA pooling strategy was implemented to identify promising landraces and genomic regions to enlarge the genetic diversity of modern varieties. As proof of concept, DNA pools from 156 American and European maize landraces representing 2340 individuals were genotyped with an SNP array to assess their genome-wide diversity.

View Article and Find Full Text PDF

We introduce a fast, new algorithm for inferring from allele count data the FST parameters describing genetic distances among a set of populations and/or unrelated diploid individuals, and a tree with branch lengths corresponding to FST values. The tree can reflect historical processes of splitting and divergence, but seeks to represent the actual genetic variance as accurately as possible with a tree structure. We generalise two major approaches to defining FST, via correlations and mismatch probabilities of sampled allele pairs, which measure shared and non-shared components of genetic variance.

View Article and Find Full Text PDF

The mapping and introduction of sustainable resistance to viruses in crops is a major challenge in modern breeding, especially regarding vegetables. We hence assembled a panel of cucumber elite lines and landraces from different horticultural groups for testing with six virus species. We mapped 18 quantitative trait loci (QTL) with a multiloci genome wide association studies (GWAS), some of which have already been described in the literature.

View Article and Find Full Text PDF

Phenomic prediction of wheat grain yield and heading date in different multi-environmental trial scenarios is accurate. Modelling the genotype-by-environment interaction effect using phenomic data is a potentially low-cost complement to genomic prediction. The performance of wheat cultivars in multi-environmental trials (MET) is difficult to predict because of the genotype-by-environment interactions (G × E).

View Article and Find Full Text PDF

Calibrating a genomic selection model on a sparse factorial design rather than on tester designs is advantageous for some traits, and equivalent for others. In maize breeding, the selection of the candidate inbred lines is based on topcross evaluations using a limited number of testers. Then, a subset of single-crosses between these selected lines is evaluated to identify the best hybrid combinations.

View Article and Find Full Text PDF

The efficiency of genomic selection strongly depends on the prediction accuracy of the genetic merit of candidates. Numerous papers have shown that the composition of the calibration set is a key contributor to prediction accuracy. A poorly defined calibration set can result in low accuracies, whereas an optimized one can considerably increase accuracy compared to random sampling, for a same size.

View Article and Find Full Text PDF

Genetic admixture, resulting from the recombination between structural groups, is frequently encountered in breeding populations. In hybrid breeding, crossing admixed lines can generate substantial nonadditive genetic variance and contrasted levels of inbreeding which can impact trait variation. This study aimed at testing recent methodological developments for the modeling of inbreeding and nonadditive effects in order to increase prediction accuracy in admixed populations.

View Article and Find Full Text PDF

Since their introduction in the 50's, variance component mixed models have been widely used in many application fields. In this context, ReML estimation is by far the most popular procedure to infer the variance components of the model. Although many implementations of the ReML procedure are readily available, there is still need for computational improvements due to the ever-increasing size of the datasets to be handled, and to the complexity of the models to be adjusted.

View Article and Find Full Text PDF

In the context of finite mixture models one considers the problem of classifying as many observations as possible in the classes of interest while controlling the classification error rate in these same classes. Similar to what is done in the framework of statistical test theory, different type I and type II-like classification error rates can be defined, along with their associated optimal rules, where optimality is defined as minimizing type II error rate while controlling type I error rate at some nominal level. It is first shown that finding an optimal classification rule boils down to searching an optimal region in the observation space where to apply the classical Maximum A Posteriori (MAP) rule.

View Article and Find Full Text PDF
Article Synopsis
  • Growing virus-resistant plant varieties can effectively prevent yield losses from viral infections.
  • The challenge lies in identifying resistance donors within plant species and introducing their resistance alleles into high-performing genetic backgrounds.
  • Genome-wide association studies (GWAS) have the potential to accelerate the mapping of both simple and complex resistance traits, with 48 existing studies successfully identifying quantitative trait loci (QTLs) associated with plant virus resistance, highlighting important steps in the GWAS process.
View Article and Find Full Text PDF

Motivation: Combining the results of different experiments to exhibit complex patterns or to improve statistical power is a typical aim of data integration. The starting point of the statistical analysis often comes as a set of P-values resulting from previous analyses, that need to be combined flexibly to explore complex hypotheses, while guaranteeing a low proportion of false discoveries.

Results: We introduce the generic concept of composed hypothesis, which corresponds to an arbitrary complex combination of simple hypotheses.

View Article and Find Full Text PDF

Food legumes are crucial for all agriculture-related societal challenges, including climate change mitigation, agrobiodiversity conservation, sustainable agriculture, food security and human health. The transition to plant-based diets, largely based on food legumes, could present major opportunities for adaptation and mitigation, generating significant co-benefits for human health. The characterization, maintenance and exploitation of food-legume genetic resources, to date largely unexploited, form the core development of both sustainable agriculture and a healthy food system.

View Article and Find Full Text PDF