Publications by authors named "Tristan Madeleine"

Structural disorder can improve the optical properties of metasurfaces, whether it is emerging from some large-scale fabrication methods or explicitly designed and built lithographically. For example, correlated disorder, induced by a minimum inter-nanostructure distance or by hyperuniformity properties, is particularly beneficial for light extraction. Inspired by topology, we introduce numerical descriptors to provide quantitative measures of disorder with universal properties, suitable to treat both uncorrelated and correlated disorder at all length scales.

View Article and Find Full Text PDF

Metasurfaces can be realized by organizing subwavelength elements (e.g., plasmonic nanoparticles) on a reflective surface covered with a dielectric layer.

View Article and Find Full Text PDF

Plasmonic resonances in sub-wavelength cavities, created by metallic nanocubes separated from a metallic surface by a dielectric gap, lead to strong light confinement and strong Purcell effect, with many applications in spectroscopy, enhanced light emission and optomechanics. However, the limited choice of metals, and the constraints on the sizes of the nanocubes, restrict the optical wavelength range of applications. We show that dielectric nanocubes made of intermediate to high refractive index materials exhibit similar but significantly blue shifted and enriched optical responses due to the interaction between gap plasmonic modes and internal modes.

View Article and Find Full Text PDF