Transpeptidases are powerful tools for protein engineering but are largely restricted to acting at protein backbone termini. Alternative enzymatic approaches for internal protein labelling require bulky recognition motifs or non-proteinogenic reaction partners, potentially restricting which proteins can be modified or the types of modification that can be installed. Here we report a strategy for labelling lysine side chain ε-amines by repurposing an engineered asparaginyl ligase, which naturally catalyses peptide head-to-tail cyclization, for versatile isopeptide ligations that are compatible with peptidic substrates.
View Article and Find Full Text PDFBioactive peptides are a highly abundant and diverse group of molecules that exhibit a wide range of structural and functional variation. Despite their immense therapeutic potential, bioactive peptides have been traditionally perceived as poor drug candidates, largely due to intrinsic shortcomings that reflect their endogenous heritage, i.e.
View Article and Find Full Text PDFTranspeptidase-catalyzed protein and peptide modifications have been widely utilized for generating conjugates of interest for biological investigation or therapeutic applications. However, all known transpeptidases are constrained to ligating in the N-to-C orientation, limiting the scope of attainable products. Here, we report that an engineered asparaginyl ligase accepts diverse incoming nucleophile substrate mimetics, particularly when a means of selectively quenching the reactivity of byproducts released from the recognition sequence is employed.
View Article and Find Full Text PDFChemoenzymatic protein and peptide modification is a powerful means of generating defined, homogeneous conjugates for a range of applications. However, the use of transpeptidases is limited by the need to prepare synthetic peptide conjugates to be ligated, bulky recognition tags remaining in the product, and inefficient substrate turnover. Here, we report a peptide/protein labeling strategy that utilizes a promiscuous, engineered transpeptidase to irreversibly incorporate diverse, commercially available amines at a C-terminal asparagine.
View Article and Find Full Text PDFEnzyme-catalysed site-specific protein modifications enable the precision manufacture of conjugates for the study of protein function and/or for therapeutic or diagnostic applications. Asparaginyl ligases are a class of highly efficient transpeptidases with the capacity to modify proteins bearing only a tripeptide recognition motif. Herein, we review the types of protein modification that are accessible using these enzymes, including N- and C-terminal protein labelling, head-to-tail cyclisation, and protein-protein conjugation.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
February 2021
The use of enzymes for the site-specific modification of proteins/peptides has become a highly accessible, widespread approach to study protein/peptide functions or to generate therapeutic conjugates. Asparaginyl endopeptidases (AEPs) that preferentially catalyze transpeptidation reactions (AEP ligases) have emerged as enticing alternatives to established approaches, such as bacterial sortases, due to their catalytic efficiency and short tripeptide recognition motifs. However, under standard conditions, a substantial excess of the nucleophile to be conjugated is needed to reach desirable yields.
View Article and Find Full Text PDF