Publications by authors named "Tristan Harmel"

Freshwater algae exhibit complex dynamics, particularly in meso-oligotrophic lakes with sudden and dramatic increases in algal biomass following long periods of low background concentration. While the fundamental prerequisites for algal blooms, namely light and nutrient availability, are well-known, their specific causation involves an intricate chain of conditions. Here we examine a recent massive Uroglena bloom in Lake Geneva (Switzerland/France).

View Article and Find Full Text PDF

Water and sediment discharges can change rapidly, and low-frequency measurement devices might not be sufficient to elucidate existing dynamics. As such, above-water radiometry might enhance monitoring of suspended particulate matter (SPM) dynamics in inland waters. However, it has been barely applied for continuous monitoring, especially under partially cloudy sky conditions.

View Article and Find Full Text PDF

The exploitation of satellite remote sensing is expected to be a critical asset in monitoring floating and submerged plastic litter in all aquatic environments. However, robust retrieval algorithms still havel to be developed based on a full understanding of light interaction with plastic litter and the other optically active constituents of the atmosphere-water system. To this end, we performed laboratory-based hyperspectral reflectance measurements of submerged macroplastics under varying water clarity conditions (clear - 0 mg/L, moderate - 75 mg/L, very turbid - 321.

View Article and Find Full Text PDF

The presence of hydrosols, taken as suspension of micro- or macroscopic material in water, strongly alters light propagation and thus the radiance distribution within a natural or artificial water volume. Understanding of hydrosols' impacts on light propagation is limited by our ability to accurately handle the angular scattering phase function inherent to complex material such as suspended sediments or living cells. Based on actual quality-controlled measurements of sediments and microalgae, this Letter demonstrates the superiority of a two-term five-parameter empirical phase function as recently proposed for scattering by nanoparticle layers [Nanoscale11, 7404 (2019)NANOHL2040-336410.

View Article and Find Full Text PDF

We present reflectance measurements collected from virgin and ocean-harvested plastics. Virgin plastics included high and low density polyethylene (HDPE, LDPE), polypropylene (PP) as well as polystyrene (PS). Ocean-harvested plastics were ropes, sheets, foam, pellets and fragmented items previously trawled from the North Pacific Garbage Patch.

View Article and Find Full Text PDF

Total and polarized radiances from above the ocean surface are measured by a state-of-the-art snapshot hyperspectral imager. A computer-controlled filter wheel is installed in front of the imager allowing for recording of division-of-time Stokes vector images from the ocean surface. This system, to the best of our knowledge, for the first time provided a capability of hyperspectral polarimetric multi-angular measurements of radiances from above the water surface.

View Article and Find Full Text PDF

The value and spectral dependence of the reflectance coefficient (ρ) of skylight from wind-roughened ocean surfaces is critical for determining accurate water leaving radiance and remote sensing reflectances from shipborne, AERONET-Ocean Color and satellite observations. Using a vector radiative transfer code, spectra of the reflectance coefficient and corresponding radiances near the ocean surface and at the top of the atmosphere (TOA) are simulated for a broad range of parameters including flat and windy ocean surfaces with wind speeds up to 15 m/s, aerosol optical thicknesses of 0-1 at 440nm, wavelengths of 400-900 nm, and variable Sun and viewing zenith angles. Results revealed a profound impact of the aerosol load and type on the spectral values of ρ.

View Article and Find Full Text PDF

Estimation of daily photosynthetically active radiation (PAR) is of primary importance for monitoring the ocean primary production and the subsequent production of carbon by phytoplankton at global scale from remote sensing ocean color sensors. On the other hand, aerosol abundance and composition play a critical role in the modulation of PAR. In this study, an original algorithm, so-called OLCIPAR, is proposed for routinely determining the daily PAR from optical satellite sensors such as the OLCI sensor aboard Sentinel-3 (ESA).

View Article and Find Full Text PDF

In this study, we present a radiative transfer model, so-called OSOAA, that is able to predict the radiance and degree of polarization within the coupled atmosphere-ocean system in the presence of a rough sea surface. The OSOAA model solves the radiative transfer equation using the successive orders of scattering method. Comparisons with another operational radiative transfer model showed a satisfactory agreement within 0.

View Article and Find Full Text PDF

An innovative instrument dedicated to the multispectral measurements of the directional and polarized scattering properties of the hydrosols, so-called POLVSM, is described. The instrument could be used onboard a ship, as a benchtop instrument, or at laboratory. The originality of the POLVSM concept relies on the use of a double periscopic optical system whose role is (i) to separate the plane containing the light source from the scattering plane containing the sample and the receiver and (ii) to prevent from any specularly reflected light within the sample chamber.

View Article and Find Full Text PDF

Above-water measurements of water-leaving radiance are widely used for water-quality monitoring and ocean-color satellite data validation. Reflected skylight in above-water radiometry needs to be accurately estimated prior to derivation of water-leaving radiance. Up-to-date methods to estimate reflection of diffuse skylight on rough sea surfaces are based on radiative transfer simulations and sky radiance measurements.

View Article and Find Full Text PDF

The attenuation coefficient of the water body is not directly retrievable from measurements of unpolarized water-leaving radiance. Based on extensive radiative transfer simulations using the vector radiative transfer code RayXP, it is demonstrated that the underwater degree of linear polarization (DoLP) is closely related to the attenuation-to-absorption ratio (c/a) of the water body, a finding that enables retrieval of the attenuation coefficient from measurements of the Stokes components of the upwelling underwater polarized light field. The relationship between DoLP and the c/a ratio is investigated for the upwelling polarized light field for a complete set of viewing geometries, at several wavelengths in the visible part of the spectrum; for varying compositions of the aquatic environment, whose constituents include phytoplankton, non-algal particles, and color dissolved organic matter (CDOM); and for varying microphysical properties such as the refractive index and the slope of the Junge-type particle size distribution (PSD).

View Article and Find Full Text PDF

Water-leaving radiances, retrieved from in situ or satellite measurements, need to be corrected for the bidirectional properties of the measured light in order to standardize the data and make them comparable with each other. The current operational algorithm for the correction of bidirectional effects from the satellite ocean color data is optimized for typical oceanic waters. However, versions of bidirectional reflectance correction algorithms specifically tuned for typical coastal waters and other case 2 conditions are particularly needed to improve the overall quality of those data.

View Article and Find Full Text PDF

The Long Island Sound Coastal Observational platform (LISCO) near Northport, New York, has been recently established to support validation of ocean color radiometry (OCR) satellite data. LISCO is equipped with collocated multispectral, SeaPRISM, and hyperspectral, HyperSAS, above-water systems for OCR measurements. This combination offers the potential for improving validation activities of current and future OCR satellite missions, as well as for satellite intercomparisons and spectral characterization of coastal waters.

View Article and Find Full Text PDF

An original atmospheric correction algorithm, so-called multi-directionality and POLarization-based Atmospheric Correction (POLAC), is described. This algorithm is based on the characteristics of the multidirectional and polarimetric data of the satellite PARASOL (CNES). POLAC algorithm is used to assess the influence of the polarimetric information in the visible bands on the retrieval of the aerosol properties and the water-leaving radiance over open ocean waters.

View Article and Find Full Text PDF

The influence of oceanic constituents on the polarized reflectance measured at the top of atmosphere (TOA) over open ocean waters in one visible band is investigated. First, radiative transfer modelling is used to quantify the effects of biomass concentration on the TOA polarized signal for a wide range of observation geometries. The results showed that the TOA polarized reflectance remains insensitive to variations in the chlorophyll a concentration whatever the geometrical conditions in oligotrophic and mesotrophic waters, which represent about 90% of the global ocean.

View Article and Find Full Text PDF