Publications by authors named "Tristan Glatard"

In a perfect world, scientists would develop analyses that are guaranteed to reveal the ground truth of a research question. In reality, there are countless viable workflows that produce distinct, often conflicting, results. Although reproducibility places a necessary bound on the validity of results, it is not sufficient for claiming underlying validity, eventual utility, or generalizability.

View Article and Find Full Text PDF

Semantic memory representations are generally well maintained in aging, whereas semantic control is thought to be more affected. To explain this phenomenon, this study tested the predictions of the Compensation-Related Utilization of Neural Circuits Hypothesis (CRUNCH), focusing on task demands in aging as a possible framework. The CRUNCH effect would manifest itself in semantic tasks through a compensatory increase in neural activation in semantic control network regions but only up to a certain threshold of task demands.

View Article and Find Full Text PDF

Context: An existing major challenge in Parkinson's disease (PD) research is the identification of biomarkers of disease progression. While magnetic resonance imaging is a potential source of PD biomarkers, none of the magnetic resonance imaging measures of PD are robust enough to warrant their adoption in clinical research. This study is part of a project that aims to replicate 11 PD studies reviewed in a recent survey (JAMA neurology, 78(10) 2021) to investigate the robustness of PD neuroimaging findings to data and analytical variations.

View Article and Find Full Text PDF

Convolutional neural networks (CNNs) are currently among the most widely-used deep neural network (DNN) architectures available and achieve state-of-the-art performance for many problems. Originally applied to computer vision tasks, CNNs work well with any data with a spatial relationship, besides images, and have been applied to different fields. However, recent works have highlighted numerical stability challenges in DNNs, which also relates to their known sensitivity to noise injection.

View Article and Find Full Text PDF

We present the Canadian Open Neuroscience Platform (CONP) portal to answer the research community's need for flexible data sharing resources and provide advanced tools for search and processing infrastructure capacity. This portal differs from previous data sharing projects as it integrates datasets originating from a number of already existing platforms or databases through DataLad, a file level data integrity and access layer. The portal is also an entry point for searching and accessing a large number of standardized and containerized software and links to a computing infrastructure.

View Article and Find Full Text PDF

The value of understanding patients' illness experience and social contexts for advancing medicine and clinical care is widely acknowledged. However, methodologies for rigorous and inclusive data gathering and integrative analysis of biomedical, cultural, and social factors are limited. In this paper, we propose a digital strategy for large-scale qualitative health research, using (as a state of being, a communication mode or context, and a set of imaginative, expressive, and game-like activities) as a research method for recursive learning and action planning.

View Article and Find Full Text PDF

The analysis of brain-imaging data requires complex processing pipelines to support findings on brain function or pathologies. Recent work has shown that variability in analytical decisions, small amounts of noise, or computational environments can lead to substantial differences in the results, endangering the trust in conclusions. We explored the instability of results by instrumenting a structural connectome estimation pipeline with Monte Carlo Arithmetic to introduce random noise throughout.

View Article and Find Full Text PDF
Article Synopsis
  • * To improve automation in lesion segmentation, a unique dataset has been created consisting of MRI scans from 53 MS patients, processed through a harmonized protocol across 4 different scanners, with lesions annotated by 7 experts.
  • * This dataset includes both raw and preprocessed images, offering a split for training and testing, especially with data from unseen scanners, which aims to serve as a reference for evaluating and comparing various lesion segmentation methods and their performance.
View Article and Find Full Text PDF

Neuroimaging stands to benefit from emerging ultrahigh-resolution 3D histological atlases of the human brain; the first of which is 'BigBrain'. Here, we review recent methodological advances for the integration of BigBrain with multi-modal neuroimaging and introduce a toolbox, 'BigBrainWarp', that combines these developments. The aim of BigBrainWarp is to simplify workflows and support the adoption of best practices.

View Article and Find Full Text PDF

As the global health crisis unfolded, many academic conferences moved online in 2020. This move has been hailed as a positive step towards inclusivity in its attenuation of economic, physical, and legal barriers and effectively enabled many individuals from groups that have traditionally been underrepresented to join and participate. A number of studies have outlined how moving online made it possible to gather a more global community and has increased opportunities for individuals with various constraints, e.

View Article and Find Full Text PDF

Background: Software containers greatly facilitate the deployment and reproducibility of scientific data analyses in various platforms. However, container images often contain outdated or unnecessary software packages, which increases the number of security vulnerabilities in the images, widens the attack surface in the container host, and creates substantial security risks for computing infrastructures at large. This article presents a vulnerability analysis of container images for scientific data analysis.

View Article and Find Full Text PDF

Background: Data analysis pipelines are known to be affected by computational conditions, presumably owing to the creation and propagation of numerical errors. While this process could play a major role in the current reproducibility crisis, the precise causes of such instabilities and the path along which they propagate in pipelines are unclear.

Method: We present Spot, a tool to identify which processes in a pipeline create numerical differences when executed in different computational conditions.

View Article and Find Full Text PDF

This paper evaluates data stream classifiers from the perspective of connected devices, focusing on the use case of Human Activity Recognition. We measure both the classification performance and resource consumption (runtime, memory, and power) of five usual stream classification algorithms, implemented in a consistent library, and applied to two real human activity datasets and three synthetic datasets. Regarding classification performance, the results show the overall superiority of the Hoeffding Tree, the Mondrian forest, and the Naïve Bayes classifiers over the Feedforward Neural Network and the Micro Cluster Nearest Neighbor classifiers on four datasets out of six, including the real ones.

View Article and Find Full Text PDF
Article Synopsis
  • The Tomographic Quantitative Electroencephalography (qEEGt) toolbox, integrated with the MNI Neuroinformatics Ecosystem, allows users to create age-corrected EEG normative Statistical Parametric Maps based on a normative database.
  • Developed at the Cuban Neuroscience Center as part of the CHBMP, this validated toolbox offers features like EEG scalp spectra calculation and source spectra estimation using Variable Resolution Electrical Tomography (VARETA).
  • The open-source release on GitHub and Zenodo, along with user-friendly visualization tools, aims to promote standardized qEEGt methods for research and clinical use, marking the first phase of the CCC neuroinformatic project.
View Article and Find Full Text PDF

With an increase in awareness regarding a troubling lack of reproducibility in analytical software tools, the degree of validity in scientific derivatives and their downstream results has become unclear. The nature of reproducibility issues may vary across domains, tools, data sets, and computational infrastructures, but numerical instabilities are thought to be a core contributor. In neuroimaging, unexpected deviations have been observed when varying operating systems, software implementations, or adding negligible quantities of noise.

View Article and Find Full Text PDF

Data analysis workflows in many scientific domains have become increasingly complex and flexible. Here we assess the effect of this flexibility on the results of functional magnetic resonance imaging by asking 70 independent teams to analyse the same dataset, testing the same 9 ex-ante hypotheses. The flexibility of analytical approaches is exemplified by the fact that no two teams chose identical workflows to analyse the data.

View Article and Find Full Text PDF

The sliding window technique is widely used to segment inertial sensor signals, i.e., accelerometers and gyroscopes, for activity recognition.

View Article and Find Full Text PDF

Neuroscience has been carried into the domain of big data and high performance computing (HPC) on the backs of initiatives in data collection and an increasingly compute-intensive tools. While managing HPC experiments requires considerable technical acumen, platforms, and standards have been developed to ease this burden on scientists. While web-portals make resources widely accessible, data organizations such as the Brain Imaging Data Structure and tool description languages such as Boutiques provide researchers with a foothold to tackle these problems using their own datasets, pipelines, and environments.

View Article and Find Full Text PDF

We present a study of multiple sclerosis segmentation algorithms conducted at the international MICCAI 2016 challenge. This challenge was operated using a new open-science computing infrastructure. This allowed for the automatic and independent evaluation of a large range of algorithms in a fair and completely automatic manner.

View Article and Find Full Text PDF

We present Boutiques, a system to automatically publish, integrate, and execute command-line applications across computational platforms. Boutiques applications are installed through software containers described in a rich and flexible JSON language. A set of core tools facilitates the construction, validation, import, execution, and publishing of applications.

View Article and Find Full Text PDF

Introduction: Automatic functional volume segmentation in PET images is a challenge that has been addressed using a large array of methods. A major limitation for the field has been the lack of a benchmark dataset that would allow direct comparison of the results in the various publications. In the present work, we describe a comparison of recent methods on a large dataset following recommendations by the American Association of Physicists in Medicine (AAPM) task group (TG) 211, which was carried out within a MICCAI (Medical Image Computing and Computer Assisted Intervention) challenge.

View Article and Find Full Text PDF

Given concerns about the reproducibility of scientific findings, neuroimaging must define best practices for data analysis, results reporting, and algorithm and data sharing to promote transparency, reliability and collaboration. We describe insights from developing a set of recommendations on behalf of the Organization for Human Brain Mapping and identify barriers that impede these practices, including how the discipline must change to fully exploit the potential of the world's neuroimaging data.

View Article and Find Full Text PDF

Data sharing is becoming more of a requirement as technologies mature and as global research and communications diversify. As a result, researchers are looking for practical solutions, not only to enhance scientific collaborations, but also to acquire larger amounts of data, and to access specialized datasets. In many cases, the realities of data acquisition present a significant burden, therefore gaining access to public datasets allows for more robust analyses and broadly enriched data exploration.

View Article and Find Full Text PDF

Only a tiny fraction of the data and metadata produced by an fMRI study is finally conveyed to the community. This lack of transparency not only hinders the reproducibility of neuroimaging results but also impairs future meta-analyses. In this work we introduce NIDM-Results, a format specification providing a machine-readable description of neuroimaging statistical results along with key image data summarising the experiment.

View Article and Find Full Text PDF

The development of magnetic resonance imaging (MRI) techniques has defined modern neuroimaging. Since its inception, tens of thousands of studies using techniques such as functional MRI and diffusion weighted imaging have allowed for the non-invasive study of the brain. Despite the fact that MRI is routinely used to obtain data for neuroscience research, there has been no widely adopted standard for organizing and describing the data collected in an imaging experiment.

View Article and Find Full Text PDF