There is a growing interest for complex in vitro environments that closely mimic the extracellular matrix and allow cells to grow in microenvironments that are closer to the one in vivo. Protein-based matrices and especially hydrogels can answer this need, thanks to their similarity with the cell microenvironment and their ease of customization. In this study, an experimental design was conducted to study the influence of synthesis parameters on the physical properties of gelatin methacryloyl (GelMA).
View Article and Find Full Text PDFThe electric field gradient tensor (considered here at the level of a nitrogen nucleus) can be described by two parameters: the largest element in the (,,) principal axis system, denoted by (leading to the nuclear quadrupole coupling), and the asymmetry parameter η = (|| - ||)/|| with || > || > ||. The frequencies of the three nitrogen-14 nuclear quadrupole resonance (NQR) transitions depend on both parameters but, for sensitivity reasons, their determination may be especially difficult and time consuming. For a partly rigid NH grouping with a labile proton, water nuclear magnetic resonance (NMR) relaxometry curves may exhibit these three transitions (dubbed quadrupolar dips or quadrupole relaxation enhancement (QRE)), provided that the NH grouping belongs to a moiety possessing a sufficient degree of ordering.
View Article and Find Full Text PDFOver the last twenty years, low-molecular weight gelators and, in particular, peptide-based hydrogels, have drawn great attention from scientists thanks to both their inherent advantages in terms of properties and their high modularity (, number and nature of the amino acids). These supramolecular hydrogels originate from specific peptide self-assembly processes that can be driven, modulated and optimized specific chemical modifications brought to the peptide sequence. Among them, the incorporation of nucleobases, another class of biomolecules well-known for their abilities to self-assemble, has recently appeared as a new promising and burgeoning approach to finely design supramolecular hydrogels.
View Article and Find Full Text PDFPeptide-based hydrogels are physical gels formed through specific supramolecular self-assembling processes, leading to ordered nanostructures which constitute the water entrapping scaffold of the soft material. Thanks to the inherent properties of peptides, these hydrogels are highly considered in the biomedical domain and open new horizons in terms of application in advanced therapies and biotechnologies. The use of one, and only one, native peptide to formulate a gel is by far the most reported approach to design such materials, but suffers from several limitations, including in terms of mechanical properties.
View Article and Find Full Text PDFPeptide self-assemblies have attracted intense research interest over the last few decades thanks to their implications in key biological processes (e.g., amyloid formation) and their use in biotechnological and (bio)material fields.
View Article and Find Full Text PDFFluorescent base analogues (FBAs) have emerged as a powerful class of molecular reporters of location and environment for nucleic acids. In our overall mission to develop bright and useful FBAs for all natural nucleobases, herein we describe the synthesis and thorough characterization of bicyclic thymidine (bT), both as a monomer and when incorporated into DNA. We have developed a robust synthetic route for the preparation of the bT DNA monomer and the corresponding protected phosphoramidite for solid-phase DNA synthesis.
View Article and Find Full Text PDF