Publications by authors named "Tristan Delcaillau"

Many elegant asymmetric syntheses of enantioenriched tertiary alcohols have been developed, and both the transition metal-catalyzed and the radical-based peripheral functionalization of tertiary alcohols have attracted intensive research interest in recent years. However, directly editing tetrasubstituted carbons remains challenging. Herein, we report a Pd-catalyzed migratory fluoroarylation reaction that converts tertiary alcohols to α-fluorinated tertiary alkyl ethers in good to excellent yields.

View Article and Find Full Text PDF

The development of divergent methods to expedite structure-activity relationship studies is crucial to streamline discovery processes. We developed a rare example of regiodivergent ring expansion to access two regioisomers from a common starting material. To enable this regiodivergence, we identified two distinct reaction conditions for transforming oxindoles into quinolinone isomers.

View Article and Find Full Text PDF

A nickel-catalyzed cyanation of aryl thioethers using Zn(CN) as a cyanide source has been developed to access functionalized aryl nitriles. The ligand dcype (1,2-bis(dicyclohexylphosphino)ethane) in combination with the base KOAc (potassium acetate) is essential for achieving this transformation efficiently. This reaction involves both a C-S bond activation and a C-C bond formation.

View Article and Find Full Text PDF

A nickel-catalyzed thiolation of aryl nitriles has been developed to access functionalized aryl thioethers. The ligand dcype (1,2-bis(dicyclohexylphosphino)ethane) as well as the base KO Bu (potassium tert-butoxide) are essential to achieve this transformation. This scalable and practical process involves both a C-C bond activation and a C-S bond formation.

View Article and Find Full Text PDF

We describe a new functional group metathesis between aryl nitriles and aryl thioethers. The catalytic system nickel/dcype is essential to achieve this fully reversible transformation in good to excellent yields. Furthermore, the cyanide- and thiol-free reaction shows high functional group tolerance and great efficiency for the late-stage derivatization of commercial molecules.

View Article and Find Full Text PDF

Secondary and tertiary alkylamines are privileged substance classes that are often found in pharmaceuticals and other biologically active small molecules. Herein, we report their direct synthesis from alkenes through an aminative difunctionalization reaction enabled by iron catalysis. A family of ten novel hydroxylamine-derived aminating reagents were designed for the installation of several medicinally relevant amine groups, such as methylamine, morpholine and piperazine, through the aminochlorination of alkenes.

View Article and Find Full Text PDF

A nickel-catalyzed aryl thioether metathesis has been developed to access high-value thioethers. 1,2-Bis(dicyclohexylphosphino)ethane (dcype) is essential to promote this highly functional-group-tolerant reaction. Furthermore, synthetically challenging macrocycles could be obtained in good yield in an unusual example of ring-closing metathesis that does not involve alkene bonds.

View Article and Find Full Text PDF

Primary amines are essential constituents of biologically active molecules and versatile intermediates in the synthesis of drugs and agrochemicals. However, their preparation from easily accessible alkenes remains challenging. Here, we report a general strategy to access primary amines from alkenes through an operationally simple iron-catalyzed aminochlorination reaction.

View Article and Find Full Text PDF