Phosphonium and ammonium polymers can be combined with polyanions to form polyelectrolyte complex (PEC) networks, with potential application in self-healing materials and drug delivery vehicles. While various structures and compositions have been explored, to the best of our knowledge, analogous ammonium and phosphonium networks have not been directly compared to evaluate the effects of phosphorus versus nitrogen cations on the network properties. In this study, we prepared PECs from sodium alginate and poly[triethyl(4-vinylbenzyl)phosphonium chloride], poly[triethyl(4-vinylbenzyl)ammonium chloride], poly[tri(-butyl)(4-vinylbenzyl)phosphonium chloride], poly[tri(-butyl)(4-vinylbenzyl)ammonium chloride], and poly[tris(hydroxypropyl)(4-vinylbenzyl)phosphonium chloride].
View Article and Find Full Text PDFPolyelectrolyte complexation, the combination of anionically and cationically charged polymers through ionic interactions, can be used to form hydrogel networks. These networks can be used to encapsulate and release cargo, but the release of cargo is typically rapid, occurring over a period of hours to a few days and they often exhibit weak, fluid-like mechanical properties. Here we report the preparation and study of polyelectrolyte complexes (PECs) from sodium hyaluronate (HA) and poly[tris(hydroxypropyl)(4-vinylbenzyl)phosphonium chloride], poly[triphenyl(4-vinylbenzyl)phosphonium chloride], poly[tri(-butyl)(4-vinylbenzyl)phosphonium chloride], or poly[triethyl(4-vinylbenzyl)phosphonium chloride].
View Article and Find Full Text PDFWe describe the synthesis of three different phosphonium salts and their reaction with poly(ethylene glycol) dimethacrylate to create cationic hydrogels. The hydrogels were loaded with an anionic dye and an anionic anti-inflammatory drug through ionic interactions and compared with an analogous ammonium gel. The release rates of these anions depended on their structure and pKa values, as well as the pH and ionic strength of the release medium.
View Article and Find Full Text PDFThere is currently an urgent need for the development of new antibacterial agents to combat the spread of antibiotic-resistant bacteria. We explored the synthesis and antibacterial activities of novel, sugar-functionalized phosphonium polymers. While these compounds exhibited antibacterial activity, we unexpectedly found that the control polymer poly(tris(hydroxypropyl)vinylbenzylphosphonium chloride) showed very high activity against both Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus and very low haemolytic activity against red blood cells.
View Article and Find Full Text PDFThe development of new approaches to antibacterial surfaces is of growing interest to combat the spread of harmful bacterial infections. Relative to polyammoniums, polyphosphoniums can exhibit enhanced chemical and thermal stability, but have not yet been widely explored for the preparation of antibacterial surfaces. In this work, polyphosphoniums of varying chain lengths were synthesized by reversible addition-fragmentation chain-transfer polymerization of 4-vinylbenzyl derivatives of triethyl, tributyl, and trioctylphosphonium.
View Article and Find Full Text PDF