Publications by authors named "Tristan Baumberger"

The assembly of biopolymers into a hydrated elastic network often goes along with , a spontaneous process during which the hydrogel slowly shrinks and releases solvent. The tendency to syneresis of calcium-alginate hydrogels, widely used biocompatible materials, is a hindrance to applications for which dimensional integrity is crucial. Although calcium-induced aggregation of specific block-sequences has been long known as the microscopic process at work in both primary cross-linking and syneresis, the nature of the coupling between these structural events and the global deswelling flow has remained so far elusive.

View Article and Find Full Text PDF

Associating collagen with biodegradable hydrophobic polyesters constitutes a promising method for the design of medicated biomaterials. Current collagen-polyester composite hydrogels consisting of pre-formed polymeric particles encapsulated within a low concentrated collagen hydrogel suffer from poor physical properties and low drug loading. Herein, an amphiphilic composite platform associating dense collagen hydrogels and up to 50 wt% polyesters with different hydrophobicity and chain length is developed.

View Article and Find Full Text PDF

The elaboration of scaffolds able to efficiently promote cell differentiation toward a given cell type remains challenging. Here, we engineered dense type I collagen threads with the aim of providing scaffolds with specific morphological and mechanical properties for C3H10T1/2 mesenchymal stem cells. Extrusion of pure collagen solutions at different concentrations (15, 30, and 60 mg/mL) in a PBS 5× buffer generated dense fibrillated collagen threads.

View Article and Find Full Text PDF

Silicates-in-silica nanocomposite hydrogels obtained from sodium silicates/colloidal silica mixtures have previously been found to be useful for bacterial encapsulation. However the extension of synthesis conditions and the understanding of their impact on the silica matrix would widen the applicability of this process in terms of encapsulated organisms and the host properties. Here the influence of silicates and the colloidal silica concentration as well as pH conditions on the gel time, the optical properties, the structural and mechanical properties of silica matrices was studied.

View Article and Find Full Text PDF

Tendon formation and repair rely on specific combinations of transcription factors, growth factors, and mechanical parameters that regulate the production and spatial organization of type I collagen. Here, we investigated the function of the zinc finger transcription factor EGR1 in tendon formation, healing, and repair using rodent animal models and mesenchymal stem cells (MSCs). Adult tendons of Egr1-/- mice displayed a deficiency in the expression of tendon genes, including Scx, Col1a1, and Col1a2, and were mechanically weaker compared with their WT littermates.

View Article and Find Full Text PDF

We present single contact friction experiments between a glassy polymer and smooth silica substrates grafted with alkylsilane layers of different coverage densities and morphologies. This allows us to adjust the polymer-substrate interaction strength. We find that, when going from weak to strong interaction, the response of the interfacial junction where shear localizes evolves from that of a highly viscous threshold fluid to that of a plastically deformed glassy solid.

View Article and Find Full Text PDF

The resistance to fracture of reversible biopolymer hydrogels is an important control factor of the textural characteristics of food gels (such as gummy candies and aspic preparations). It is also critical for their use in tissue engineering, for which mechanical protection of encapsulated components is needed. Its dependence on loading rate and, recently, on the density and strength of crosslinks has been investigated.

View Article and Find Full Text PDF

We present experimental evidence of self-healing shear cracks at a gel/glass interface. This system exhibits two dynamical regimes depending on the driving velocity: steady sliding at high velocity (>V(c) approximately 100--125 microm/s), characterized by a shear-thinning rheology, and periodic stick-slip dynamics at low velocity. In this last regime, slip occurs by propagation of pulses that restick via a "healing instability" occurring when the local sliding velocity reaches the macroscopic transition velocity V(c).

View Article and Find Full Text PDF