Over half of plant species are animal-dispersed, and our understanding of how animals can help plants move in response to climate change - a process known as niche tracking - is limited, but advancing rapidly. Recent research efforts find evidence that animals are helping plants track their niches. They also identify key conditions needed for animal-mediated niche tracking to occur, including alignment of the timing of seed availability, the directionality of animal movements, and microhabitat conditions where seeds are deposited.
View Article and Find Full Text PDFOverlap between wildlife and human activity is key to causing wildlife-vehicle collisions, a globally pervasive and growing source of wildlife mortality. Policies regarding clock time often involve abrupt seasonal shifts in human activity, potentially influencing rates of human-wildlife conflict. Here, we harness the biannual shift between standard and daylight saving time as a natural experiment to reveal how the timing of human activity influences deer-vehicle collisions.
View Article and Find Full Text PDFThe obligate dependency of the common hippopotamus, Hippopotamus amphibius, on water makes them particularly vulnerable to hydrological disturbances. Despite the threats facing this at-risk species, there is a lack of information regarding H. amphibius spatial ecology.
View Article and Find Full Text PDFThe contiguous United States contains a disconnected patchwork of natural lands. This fragmentation by human activities limits species' ability to track suitable climates as they rapidly shift. However, most models that project species movement needs have not examined where fragmentation will limit those movements.
View Article and Find Full Text PDFAs the climate changes, human land use may impede species from tracking areas with suitable climates. Maintaining connectivity between areas of different temperatures could allow organisms to move along temperature gradients and allow species to continue to occupy the same temperature space as the climate warms. We used a coarse-filter approach to identify broad corridors for movement between areas where human influence is low while simultaneously routing the corridors along present-day spatial gradients of temperature.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
May 2012
As they have in response to past climatic changes, many species will shift their distributions in response to modern climate change. However, due to the unprecedented rapidity of projected climatic changes, some species may not be able to move their ranges fast enough to track shifts in suitable climates and associated habitats. Here, we investigate the ability of 493 mammals to keep pace with projected climatic changes in the Western Hemisphere.
View Article and Find Full Text PDF