Publications by authors named "Tristan A F Long"

Individuals often adjust their behaviour based on their perception and experiences with the social and/or physical environment. In this study, we examined the extent of reproductive plasticity expressed in mating rates, mating latencies, mating durations, and offspring production in female fruit flies, , that encountered different numbers of males in different sized chambers. We found that mating latency length decreased with more courting males and smaller environments and that matings durations were longer in larger chambers and in the presence of two males.

View Article and Find Full Text PDF

The features of the physical environment set the stage upon which sexual selection operates, and consequently can have a significant impact on variation in realized individual fitness, and influence a population's evolutionary trajectory. This phenomenon has been explored empirically in several studies using fruit flies (Drosophila melanogaster) which have found that changing the spatial complexity of the mating environment influenced male-female interaction dynamics, (re)mating rates, and realized female fecundities. However, these studies did not explore mating patterns, which can dramatically alter the genetic composition of the next generation, and frequently only compared a single, small "simple" environment to a single larger "complex" environment.

View Article and Find Full Text PDF

While numerous theoretical population genetic models predict that mating assortatively by genetic "quality" will enhance the efficiency of purging of deleterious mutations and/or the spread of beneficial alleles in the gene pool, empirical examples of assortative mating by quality are surprisingly rare and often inconclusive. Here, we set out to examine whether fruit flies (Drosophila melanogaster) engage in assortative mating by body-size phenotype, a composite trait strongly associated with both reproductive success and survival and is considered a reliable indicator of natural genetic quality. Male and female flies of different body-size classes (large and small) were obtained under typical culture conditions, which allows us to use standing variation of body size without involving artificial nutritional manipulation, so that their interactions and mating patterns could be measured.

View Article and Find Full Text PDF

In the fruit fly, , variation in body size is influenced by a number of different factors and may be strongly associated with individual condition, performance and success in reproductive competitions. Consequently, intra-sexual variation in size in this model species has been frequently explored in order to better understand how sexual selection and sexual conflict may operate and shape evolutionary trajectories. However, measuring individual flies can often be logistically complicated and inefficient, which can result in limited sample sizes.

View Article and Find Full Text PDF

A long-standing goal for biologists and social scientists is to understand the factors that lead to the evolution and maintenance of co-operative behaviour between conspecifics. To that end, the fruit fly, Drosophila melanogaster, is becoming an increasingly popular model species to study sociality; however, most of the research to date has focused on adult behaviours. In this study, we set out to examine group-feeding behaviour by larvae and to determine whether the degree of relatedness between individuals mediates the expression co-operation.

View Article and Find Full Text PDF

Sexual selection is an important agent of evolutionary change, but the strength and direction of selection often vary over space and time. One potential source of heterogeneity may lie in the opportunity for male-male and/or male-female interactions imposed by the spatial environment. It has been suggested that increased spatial complexity permits sexual selection to act in a complementary fashion with natural selection (hastening the loss of deleterious alleles and/or promoting the spread of beneficial alleles) via two (not mutually exclusive) pathways.

View Article and Find Full Text PDF

In , males engage in both extensive pre- and post-copulatory competition for the opportunity to mate with females and subsequently sire offspring. The selection pressure for increased male reproductive success has resulted in the evolution of a wide diversity of sexual traits. However, despite strong selection, individuals often exhibit considerable phenotypic variation in the expression of these traits, and it is unclear if any of this variation is owing to underlying genetic trade-offs.

View Article and Find Full Text PDF

Since its arrival to North America less than a decade ago, the invasive Spotted-Wing Drosophila () has inflicted substantial economic losses on soft fruit agriculture due to its ability to oviposit into ripening fruits. More effective management approaches for this species are needed, but little is known about the factors that influence behavioral choices made by when selecting hosts, or the consequences that their offspring experience when developing in different environments. Using a nutritional geometry methodology, we found that the ratio of proteins-to-carbohydrates (P:C) present in media greatly influenced adult behavior and subsequent offspring development.

View Article and Find Full Text PDF

Invasive sea lamprey (Petromyzon marinus) are controlled in the Great Lakes using the lampricide 3-trifluoromethyl-4-nitrophenol (TFM), which is applied to streams infested with larval lamprey. However, lamprey that survive treatments (residuals) remain a challenge because they may subsequently undergo metamorphosis into parasitic juvenile animals that migrate downstream to the Great Lakes, where they feed on important sport and commercial fishes. The goal of this study was to determine if body size and life stage could potentially influence sea lamprey tolerance to TFM by influencing patterns of TFM uptake and elimination.

View Article and Find Full Text PDF

Female mate choice is a complex decision-making process that involves many context-dependent factors. In , a model species for the study of sexual selection, indirect genetic effects (IGEs) of general social interactions can influence female mate choice behaviors, but the potential impacts of IGEs associated with mating experiences are poorly understood. Here, we examined whether the IGEs associated with a previous mating experience had an effect on subsequent female mate choice behaviors and quantified the degree of additive genetic variation associated with this effect.

View Article and Find Full Text PDF

In Drosophila melanogaster, prolonged exposure to males reduces the longevity and fecundity of females. This harm arises from the effects of male courtship behaviours and the toxic side effects of the accessory gland proteins (Acps) in their seminal fluids. Here, we examine the relationship between male exposure and its harmful effect on the lifetime fitness of his mates, and quantify the genetic basis for this variation.

View Article and Find Full Text PDF

As individual success often comes at the expense of others, interactions between the members of a species are frequently antagonistic, especially in the context of reproduction. In theory, this conflict may be reduced in magnitude when kin interact, as cooperative behaviour between relatives can result in increased inclusive fitness. Recent tests of the potential role of cooperative behaviour between brothers in Drosophila melanogaster have proved to be both exciting and controversial.

View Article and Find Full Text PDF

Background: Identifying the sources of variation in mating interactions between males and females is important because this variation influences the strength and/or the direction of sexual selection that populations experience. While the origins and effects of variation in male attractiveness and ornamentation have received much scrutiny, the causes and consequences of intraspecific variation in females have been relatively overlooked. We used cytogenetic cloning techniques developed for Drosophila melanogaster to create "hemiclonal" males and females with whom we directly observed sexual interaction between individuals of different known genetic backgrounds and measured subsequent reproductive outcomes.

View Article and Find Full Text PDF

Inbreeding depression varies considerably among populations, but only some aspects of this variation have been thoroughly studied. Because inbreeding depression requires genetic variation, factors that influence the amount of standing variation can affect the magnitude of inbreeding depression. Environmental heterogeneity has long been considered an important contributor to the maintenance of genetic variation, but its effects on inbreeding depression have been largely ignored by empiricists.

View Article and Find Full Text PDF

Whether the changes brought about by sexual selection are, on the whole, congruent or incongruent with the changes favored by natural selection is a fundamentally important question in evolutionary biology. Although a number of theoretical models have assumed that sexual selection reinforces natural selection [1, 2], others assume these forces are in opposition [3-5]. Empirical results have been mixed (see reviews in [1, 6-8]) and the reasons for the differences among studies are unclear.

View Article and Find Full Text PDF

By measuring the direct and indirect fitness costs and benefits of sexual interactions, the feasibility of alternate explanations for polyandry can be experimentally assessed. This approach becomes more complicated when the relative magnitude of the costs and/or benefits associated with multiple mating (i.e.

View Article and Find Full Text PDF

Adaptive mate choice by females is an important component of sexual selection in many species. The evolutionary consequences of male mate preferences, however, have received relatively little study, especially in the context of sexual conflict, where males often harm their mates. Here, we describe a new and counterintuitive cost of sexual selection in species with both male mate preference and sexual conflict via antagonistic male persistence: male mate choice for high-fecundity females leads to a diminished rate of adaptive evolution by reducing the advantage to females of expressing beneficial genetic variation.

View Article and Find Full Text PDF

The strongest form of intralocus sexual conflict occurs when two conditions are met: (i) there is a positive intersexual genetic correlation for a trait and (ii) the selection gradients on the trait in the two sexes are in opposite directions. Intralocus sexual conflict can constrain the adaptive evolution of both sexes and thereby contribute to a species' 'gender load'. Previous studies of adult lifetime fitness of the same sets of genes expressed in both males and females have established that there is substantial intralocus conflict in the LHM laboratory-adapted population of Drosophila melanogaster.

View Article and Find Full Text PDF

Six sister populations of Drosophila melanogaster kept under identical environmental conditions for greater than 600 generations were reciprocally crossed to investigate the incidence of population divergence in allopatry. Population crosses directly influenced fitness, mating frequency, and sperm competition patterns. Changes in both female remating rate and the outcome of male sperm competition (P1, P2) in response to foreign males were consistent with intersexual coevolution.

View Article and Find Full Text PDF

Modification of offspring sex ratios in response to parental quality is predicted when the long-term fitness returns of sons and daughters differ. One factor that may influence a mother's sex allocation decision is the quality (or attractiveness) of her mate. We investigated whether the sex ratios of offspring produced by female Drosophila melanogaster are biased with respect to the age of the males to which they are mated, and whether there is an adaptive basis for this phenomenon.

View Article and Find Full Text PDF