Physiological activation fluctuates throughout the day. Previous studies have shown that during periods of reduced activation, cognitive control remains resilient due to neural compensatory mechanisms. In this study, we investigate the effects of high physiological activation on both behavioural and neural markers of cognitive control.
View Article and Find Full Text PDFBreathwork is an understudied school of practices involving intentional respiratory modulation to induce an altered state of consciousness (ASC). We simultaneously investigate the phenomenological and neural dynamics of breathwork by combining Temporal Experience Tracing, a quantitative methodology that preserves the temporal dynamics of subjective experience, with low-density portable EEG devices. Fourteen novice participants completed a course of up to 28 breathwork sessions-of 20, 40, or 60 min-in 28 days, yielding a neurophenomenological dataset of 301 breathwork sessions.
View Article and Find Full Text PDFIntroduction: Fluctuations of chronic pain levels are determined by a complex interplay of cognitive, emotional and perceptual variables. We introduce a pain tracking platform composed of wearable neurotechnology and a smartphone application to measure and predict chronic pain levels and its interplay with other dimensions of experience.
Methods: Our method measures, dynamically and at home, pain strength, phenomenal and neural time series collected with an online tool and low-density EEG.
Identifying the neuronal markers of consciousness is key to supporting the different scientific theories of consciousness. Neuronal markers of consciousness can be defined to reflect either the brain signatures underlying specific conscious content or those supporting different states of consciousness, two aspects traditionally studied separately. In this paper, we introduce a framework to characterize markers according to their dynamics in both the "state" and "content" dimensions.
View Article and Find Full Text PDFThroughout the day, humans show natural fluctuations in arousal that impact cognitive function. To study the behavioural dynamics of cognitive control during high and low arousal states, healthy participants performed an auditory conflict task during high-intensity physical exercise (N = 39) or drowsiness (N = 33). In line with the pre-registered hypotheses, conflict and conflict adaptation effects were preserved during both altered arousal states.
View Article and Find Full Text PDFMental health issues are markedly increased in individuals with autism, making it the number one research priority by stakeholders. There is a crucial need to use personalized approaches to understand the underpinnings of mental illness in autism and consequently, to address individual needs. Based on the risk factors identified in typical mental research, we propose the following themes central to mental health issues in autism: sleep difficulties and stress.
View Article and Find Full Text PDFFront Psychol
April 2024
Introduction: Social adaptation is a multifaceted process that encompasses cognitive, social, and affective factors. Previous research often focused on isolated variables, overlooking their interactions, especially in challenging environments. Our study addresses this by investigating how cognitive (working memory, verbal intelligence, self-regulation), social (affective empathy, family networks, loneliness), and psychological (locus of control, self-esteem, perceived stress) factors interact to influence social adaptation.
View Article and Find Full Text PDFImportant efforts have been made to describe the neural and cognitive features of healthy and clinical populations. However, the neural and cognitive features of socially vulnerable individuals remain largely unexplored, despite their proneness to developing neurocognitive disorders. Socially vulnerable individuals can be characterised as socially deprived, having a low socioeconomic status, suffering from chronic social stress, and exhibiting poor social adaptation.
View Article and Find Full Text PDFSleep is crucial for many vital functions and has been extensively studied. By contrast, the sleep-onset period (SOP), often portrayed as a mere prelude to sleep, has been largely overlooked and remains poorly characterized. Recent findings, however, have reignited interest in this transitional period and have shed light on its neural mechanisms, cognitive dynamics, and clinical implications.
View Article and Find Full Text PDFFrom the perspective of predictive coding, normal aging is accompanied by decreased weighting of sensory inputs and increased reliance on predictions, resulting in the attenuation of prediction errors in older age. Recent electroencephalography (EEG) research further revealed that the age-related shift from sensorium to predictions is hierarchy-selective, as older brains show little reduction in lower-level but significant suppression in higher-level prediction errors. Moreover, the disrupted propagation of prediction errors from the lower-level to the higher-level seems to be linked to deficient maintenance of information in working memory.
View Article and Find Full Text PDFTo ensure survival in a dynamic environment, the human neocortex monitors input streams from different sensory organs for important sensory events. Which principles govern whether different senses share common or modality-specific brain networks for sensory target detection? We examined whether complex targets evoke sustained supramodal activity while simple targets rely on modality-specific networks with short-lived supramodal contributions. In a series of hierarchical multisensory target detection studies ( = 77, of either sex) using EEG, we applied a temporal cross-decoding approach to dissociate supramodal and modality-specific cortical dynamics elicited by rule-based global and feature-based local sensory deviations within and between the visual, somatosensory, and auditory modality.
View Article and Find Full Text PDFPresleep exposure to short-wavelength light suppresses melatonin and decreases sleepiness with activating effects extending to sleep. This has mainly been attributed to melanopic effects, but mechanistic insights are missing. Thus, we investigated whether two light conditions only differing in the melanopic effects (123 vs.
View Article and Find Full Text PDFDown's syndrome is associated with pathological ageing and a propensity for early-onset Alzheimer's disease. The early symptoms of dementia in people with Down's syndrome may reflect frontal lobe vulnerability to amyloid deposition. Auditory predictive processes rely on the bilateral auditory cortices with the recruitment of frontal cortices and appear to be impaired in pathologies characterized by compromised frontal lobe.
View Article and Find Full Text PDFThere is increasing evidence that the level of consciousness can be captured by neural informational complexity: for instance, complexity, as measured by the Lempel Ziv (LZ) compression algorithm, decreases during anaesthesia and non-rapid eye movement (NREM) sleep in humans and rats, when compared with LZ in awake and REM sleep. In contrast, LZ is higher in humans under the effect of psychedelics, including subanaesthetic doses of ketamine. However, it is both unclear how this result would be modulated by varying ketamine doses, and whether it would extend to other species.
View Article and Find Full Text PDFThe ability to make decisions based on external information, prior knowledge, and evidence is a crucial aspect of cognition and may determine the success and survival of an organism. Despite extensive work on decision-making mechanisms/models, understanding the effects of alertness on neural and cognitive processes remain limited. Here we use EEG and behavioral modeling to characterize cognitive and neural dynamics of perceptual decision-making in awake/low alertness periods in humans (14 male, 18 female) and characterize the compensatory mechanisms as alertness decreases.
View Article and Find Full Text PDFHumans are uniquely capable of adapting to highly changing environments by updating relevant information and adjusting ongoing behaviour accordingly. Here we show how this ability -termed cognitive flexibility- is differentially modulated by high and low arousal fluctuations. We implemented a probabilistic reversal learning paradigm in healthy participants as they transitioned towards sleep or physical extenuation.
View Article and Find Full Text PDFThe overt or covert ability to follow commands in patients with disorders of consciousness is considered a sign of awareness and has recently been defined as cortically mediated behaviour. Despite its clinical relevance, the brain signatures of the perceptual processing supporting command following have been elusive. This multimodal study investigates the temporal spectral pattern of electrical brain activity to identify features that differentiated healthy controls from patients both able and unable to follow commands.
View Article and Find Full Text PDFBody perceptual disturbances are an increasingly acknowledged set of symptoms and possible clinical markers of complex regional pain syndrome (CRPS), but the neurophysiological and neurocognitive changes that underlie them are still far from being clear. We adopted a multivariate and neurodynamical approach to the analysis of EEG modulations evoked by touch to highlight differences between patients and healthy controls, between affected and unaffected side of the body, and between "passive" (i.e.
View Article and Find Full Text PDFWhile religious beliefs are typically studied using questionnaires, there are no standardized tools available for cognitive psychology and neuroscience studies of religious cognition. Here we present the first such tool-the Cambridge Psycholinguistic Inventory of Christian Beliefs (CPICB)-which consists of audio-recorded items of religious beliefs as well as items of three control conditions: moral beliefs, abstract scientific knowledge and empirical everyday life knowledge. The CPICB is designed in such a way that the ultimate meaning of each sentence is revealed only by its final critical word, which enables the precise measurement of reaction times and/or latencies of neurophysiological responses.
View Article and Find Full Text PDFMental imagery is the process through which we retrieve and recombine information from our memory to elicit the subjective impression of "seeing with the mind's eye". In the social domain, we imagine other individuals while recalling our encounters with them or modelling alternative social interactions in future. Many studies using imaging and neurophysiological techniques have shown several similarities in brain activity between visual imagery and visual perception, and have identified frontoparietal, occipital and temporal neural components of visual imagery.
View Article and Find Full Text PDFTranscranial magnetic stimulation (TMS) has been widely used in human cognitive neuroscience to examine the causal role of distinct cortical areas in perceptual, cognitive and motor functions. However, it is widely acknowledged that the effects of focal cortical stimulation can vary substantially between participants and even from trial to trial within individuals. Recent work from resting state functional magnetic resonance imaging (fMRI) studies has suggested that spontaneous fluctuations in alertness over a testing session can modulate the neural dynamics of cortical processing, even when participants remain awake and responsive to the task at hand.
View Article and Find Full Text PDFHumans' remarkable capacity to flexibly adapt their behavior based on rapid situational changes is termed cognitive control. Intuitively, cognitive control is thought to be affected by the state of alertness; for example, when drowsy, we feel less capable of adequately implementing effortful cognitive tasks. Although scientific investigations have focused on the effects of sleep deprivation and circadian time, little is known about how natural daily fluctuations in alertness in the regular awake state affect cognitive control.
View Article and Find Full Text PDFIn construing meaning, the brain recruits multimodal (conceptual) systems and embodied (modality-specific) mechanisms. Yet, no consensus exists on how crucial the latter are for the inception of semantic distinctions. To address this issue, we combined electroencephalographic (EEG) and intracranial EEG (iEEG) to examine when nouns denoting facial body parts (FBPs) and nonFBPs are discriminated in face-processing and multimodal networks.
View Article and Find Full Text PDF