Background: Presence of lymph node metastasis (LNM) influences prognosis and clinical decision-making in colorectal cancer. However, detection of LNM is variable and depends on a number of external factors. Deep learning has shown success in computational pathology, but has struggled to boost performance when combined with known predictors.
View Article and Find Full Text PDFHistologic grading of breast cancer involves review and scoring of three well-established morphologic features: mitotic count, nuclear pleomorphism, and tubule formation. Taken together, these features form the basis of the Nottingham Grading System which is used to inform breast cancer characterization and prognosis. In this study, we develop deep learning models to perform histologic scoring of all three components using digitized hematoxylin and eosin-stained slides containing invasive breast carcinoma.
View Article and Find Full Text PDFBackground: Breast cancer management depends on biomarkers including estrogen receptor, progesterone receptor, and human epidermal growth factor receptor 2 (ER/PR/HER2). Though existing scoring systems are widely used and well-validated, they can involve costly preparation and variable interpretation. Additionally, discordances between histology and expected biomarker findings can prompt repeat testing to address biological, interpretative, or technical reasons for unexpected results.
View Article and Find Full Text PDFBackground: Gleason grading of prostate cancer is an important prognostic factor, but suffers from poor reproducibility, particularly among non-subspecialist pathologists. Although artificial intelligence (A.I.
View Article and Find Full Text PDFBoth histologic subtypes and tumor mutation burden (TMB) represent important biomarkers in lung cancer, with implications for patient prognosis and treatment decisions. Typically, TMB is evaluated by comprehensive genomic profiling but this requires use of finite tissue specimens and costly, time-consuming laboratory processes. Histologic subtype classification represents an established component of lung adenocarcinoma histopathology, but can be challenging and is associated with substantial inter-pathologist variability.
View Article and Find Full Text PDFDeriving interpretable prognostic features from deep-learning-based prognostic histopathology models remains a challenge. In this study, we developed a deep learning system (DLS) for predicting disease-specific survival for stage II and III colorectal cancer using 3652 cases (27,300 slides). When evaluated on two validation datasets containing 1239 cases (9340 slides) and 738 cases (7140 slides), respectively, the DLS achieved a 5-year disease-specific survival AUC of 0.
View Article and Find Full Text PDFImportance: Expert-level artificial intelligence (AI) algorithms for prostate biopsy grading have recently been developed. However, the potential impact of integrating such algorithms into pathologist workflows remains largely unexplored.
Objective: To evaluate an expert-level AI-based assistive tool when used by pathologists for the grading of prostate biopsies.
Background: Digital pathology enables remote access or consults and powerful image analysis algorithms. However, the slide digitization process can create artifacts such as out-of-focus (OOF). OOF is often only detected on careful review, potentially causing rescanning, and workflow delays.
View Article and Find Full Text PDF