Publications by authors named "Trishnamoni Gautom"

In nature, species interacts/competes with one other within their surrounding for food and space and the type of interactions are unique to each species. The interacting partners secrete different metabolites, which may have high importance in human welfare. Fungal-fungal interactions are complex mechanisms that need better understanding.

View Article and Find Full Text PDF

Biological degradation of Polyethylene terephthalate (PET) plastic and assimilation of the corresponding monomers ethylene glycol and terephthalate (TPA) into central metabolism offers an attractive route for bio-based molecular recycling and bioremediation applications. A key step is the cellular uptake of the non-permeable TPA into bacterial cells which has been shown to be dependent upon the presence of the key tphC gene. However, little is known from a biochemical and structural perspective about the encoded solute binding protein, TphC.

View Article and Find Full Text PDF

Association of bacteria with fungi is a major area of research in infection biology, however, very few strains of bacteria have been reported that can invade and reside within fungal hyphae. Here, we report the characterization of an endofungal bacterium Serratia marcescens D1 from Mucor irregularis SS7 hyphae. Upon re-inoculation, colonization of the endobacterium S.

View Article and Find Full Text PDF

Background: The use of chemical fungicides against fungal pathogens adversely affects soil and plant health thereby resulting in overall environmental hazards. Therefore, biological source for obtaining antifungal agents is considered as an environment-friendly alternative for controlling fungal pathogens.

Results: In this study, seven endophytic bacteria were isolated from sugarcane leaves and screened for its antifungal activity against 10 fungal isolates belonging to the genera Alternaria, Cochliobolus, Curvularia, Fusarium, Neodeightonia, Phomopsis and Saccharicola isolated from diseased leaves of sugarcane.

View Article and Find Full Text PDF

In this paper we report the isolation and taxonomic characterization of exopolysaccharide (EPS) producing bacteria followed by the role of EPS in conferring acid tolerance to the soil bacteria Bacillus amyloliquefaciens p16. The role of EPS in promoting soil aggregation is also presented. A total of 75 isolates were tested for acid tolerance and biofilm production under acid stress of which, 54 isolates were further tested for EPS production.

View Article and Find Full Text PDF