Clonal reproduction of unicellular organisms ensures the stable inheritance of genetic information. However, this means of reproduction lacks an intrinsic basis for genetic variation, other than spontaneous mutation and horizontal gene transfer. To make up for this lack of genetic variation, many unicellular organisms undergo the process of cell differentiation to achieve phenotypic heterogeneity within isogenic populations.
View Article and Find Full Text PDFThe process of cell differentiation is highly regulated in both prokaryotic and eukaryotic organisms. The aquatic bacterium, , undergoes programmed cell differentiation from a motile swarmer cell to a stationary stalked cell with each cell cycle. This critical event is regulated at multiple levels.
View Article and Find Full Text PDFBiomolecular condensates formed via liquid-liquid phase separation enable spatial and temporal organization of enzyme activity. Phase separation in many eukaryotic condensates has been shown to be responsive to intracellular adenosine triphosphate (ATP) levels, although the consequences of these mechanisms for enzymes sequestered within the condensates are unknown. Here, we show that ATP depletion promotes phase separation in bacterial condensates composed of intrinsically disordered proteins.
View Article and Find Full Text PDFMale killing bacteria such as Spiroplasma are widespread pathogens of numerous arthropods including Drosophila melanogaster. These maternally transmitted bacteria can bias host sex ratios toward the female sex in order to 'selfishly' enhance bacterial transmission. However, little is known about the specific means by which these pathogens disrupt host development in order to kill males.
View Article and Find Full Text PDF