Publications by authors named "Trisha A Rettig"

Ab repertoire diversity plays a critical role in the host's ability to fight pathogens. CDR3 is partially responsible for Ab-Ag binding and is a significant source of diversity in the repertoire. CDR3 diversity is generated during VDJ rearrangement because of gene segment selection, gene segment trimming and splicing, and the addition of nucleotides.

View Article and Find Full Text PDF

Spaceflight is known to impact the immune system in multiple ways. However, its effect on the antibody repertoire, especially in response to challenge, has not been well characterized. The development of the repertoire has multiple steps that could be affected by spaceflight, including V-(D-)J-gene segment rearrangement and the selection of complementarity determining regions (CDRs); specifically, CDR3, responsible for much of the diversity in the repertoire.

View Article and Find Full Text PDF

Sequencing antibody repertoires has steadily become cheaper and easier. Sequencing methods usually rely on some form of amplification, often a massively multiplexed PCR prior to sequencing. To eliminate potential biases and create a data set that could be used for other studies, our lab compared unamplified sequencing results from the splenic heavy-chain repertoire in the mouse to those processed through two commercial applications.

View Article and Find Full Text PDF

Spaceflight affects the immune system, but the effects on the antibody repertoire, responsible for humoral immunity, has not been well explored. In particular, the complex gene assembly and expression process; including mutations, might make this process vulnerable. Complementarity determining region 3 (CDR3), composed of parts of the V-(D-)J-gene segments, is very important for antigen binding and can be used as an important measure of variability.

View Article and Find Full Text PDF

Sequencing antibody repertoires has steadily become cheaper and easier. Sequencing methods usually rely on some form of amplification, often a massively multiplexed PCR prior to sequencing. To eliminate potential biases and create a data set that could be used for other studies, our laboratory compared unamplified sequencing results from the splenic heavy-chain repertoire in the mouse to those processed through two commercial applications.

View Article and Find Full Text PDF

Spaceflight has been shown to suppress the adaptive immune response, altering the distribution and function of lymphocyte populations. B lymphocytes express highly specific and highly diversified receptors, known as immunoglobulins (Ig), that directly bind and neutralize pathogens. Ig diversity is achieved through the enzymatic splicing of gene segments within the genomic DNA of each B cell in a host.

View Article and Find Full Text PDF

Antibody specificity and diversity are generated through the enzymatic splicing of genomic gene segments within each B cell. Antibodies are heterodimers of heavy- and light-chains encoded on separate loci. We studied the antibody repertoire from pooled, splenic tissue of unimmunized, adult female C57BL/6J mice, using high-throughput sequencing (HTS) without amplification of antibody transcripts.

View Article and Find Full Text PDF

Spaceflight is known to affect immune cell populations. In particular, splenic B cell numbers decrease during spaceflight and in ground-based physiological models. Although antibody isotype changes have been assessed during and after space flight, an extensive characterization of the impact of spaceflight on antibody composition has not been conducted in mice.

View Article and Find Full Text PDF

The humoral innate immune system is composed of three major branches, complement, coagulation, and natural antibodies. To persist in the host, pathogens, such as bacteria, viruses, and cancers must evade parts of the innate humoral immune system. Disruptions in the humoral innate immune system also play a role in the development of autoimmune diseases.

View Article and Find Full Text PDF