Publications by authors named "Trish Parsons"

Thyroid hormone is important for skull bone growth, which primarily occurs at the cranial sutures and synchondroses. Thyroid hormones regulate metabolism and act in all stages of cartilage and bone development and maintenance by interacting with growth hormone and regulating insulin-like growth factor. Aberrant thyroid hormone levels and exposure during development are exogenous factors that may exacerbate susceptibility to craniofacial abnormalities potentially through changes in growth at the synchondroses of the cranial base.

View Article and Find Full Text PDF

Craniofacial development relies on coordinated tissue interactions that allow for patterning and growth of the face. We know a priori that the Wingless, fibroblast growth factor, Hedgehog and transforming growth factor-beta growth factor signaling pathways are required for the development of the face, but how they contribute to the shape of the face is largely untested. Here, we test how each signaling pathway contributes to the overall morphology of the zebrafish anterior neurocranium.

View Article and Find Full Text PDF

Large scale surveillance studies, case studies, as well as cohort studies have identified the influence of thyroid hormones on calvarial growth and development. Surveillance data suggests maternal thyroid disorders (hyperthyroidism, hypothyroidism with pharmacological replacement, and Maternal Graves Disease) are linked to as much as a 2.5 fold increased risk for craniosynostosis.

View Article and Find Full Text PDF

Background: Craniosynostosis, the premature fusion of one or more of the cranial sutures, is estimated to occur in 1:1800 to 2500 births. Genetic murine models of craniosynostosis exist, but often imperfectly model human patients. Case, cohort, and surveillance studies have identified excess thyroid hormone as an agent that can either cause or exacerbate human cases of craniosynostosis.

View Article and Find Full Text PDF

A leading cause of human birth defects is the incomplete fusion of tissues, often manifested in the palate, heart or neural tube. To investigate the molecular control of tissue fusion, embryonic dorsal closure and pupal thorax closure in Drosophila are useful experimental models. We find that Pvr mutants have defects in dorsal midline closure with incomplete amnioserosa internalization and epidermal zippering, as well as cardia bifida.

View Article and Find Full Text PDF

Phenotypic integration patterns in the mammalian skull have long been a focus of intense interest as a result of their suspected influence on the trajectory of hominid evolution. Here we test the hypothesis that perturbation of cartilage growth, which directly affects only the chondrocranium during development, will produce coordinated shape changes in the adult calvarium and face regardless of mechanism. Using two murine models of cartilage undergrowth that target two very different mechanisms, we show that strong reduction in cartilage growth produces a short, wide, and more flexed cranial base.

View Article and Find Full Text PDF

Background: Selective serotonin reuptake inhibitor (SSRI) use in pregnancy has been linked to craniofacial birth defects. Little is known about the effects of serotonin or SSRIs on craniofacial development. Here, we provide evidence that citalopram (SSRI) alters the osteogenic profile of murine calvarial cells and leads to craniofacial dysmorphology.

View Article and Find Full Text PDF

Craniosynostosis (CS) is a relatively common birth defect resulting from the premature fusion of one or more cranial sutures. Human genetic studies have identified several genes in association with CS. One such gene that has been implicated in both syndromic (Saethre-Chotzen syndrome) and nonsyndromic forms of CS in humans is TWIST1.

View Article and Find Full Text PDF

Introduction: Previous research suggests that aspects of facial surface morphology are heritable. Traditionally, heritability studies have used a limited set of linear distances to quantify facial morphology and often employ statistical methods poorly designed to deal with biological shape. In this preliminary report, we use a combination of 3D photogrammetry and landmark-based morphometrics to explore which aspects of face shape show the strongest evidence of heritability in a sample of twins.

View Article and Find Full Text PDF

Individuals with nonsyndromic cleft lip with or without cleft palate (CL/P) have altered brain structure compared with healthy controls. Preliminary evidence suggests that the corpus callosum may be dysmorphic in orofacial clefting; however, this midline brain structure has not been systematically assessed in this population. The goal of the present study was to carry out a morphometric assessment of the corpus callosum and its relationship to cognitive performance in a well-characterized patient cohort with orofacial cleft.

View Article and Find Full Text PDF

The human skull is a complex and highly integrated structure that has long held the fascination of anthropologists and evolutionary biologists. Recent studies of the genetics of craniofacial variation reveal a very complex and multifactorial picture. These findings contrast with older ideas that posit much simpler developmental bases for variation in cranial morphology such as the growth of the brain or the growth of the chondrocranium relative to the dermatocranium.

View Article and Find Full Text PDF

The integration of the brain and face and to what extent this relationship constrains or enables evolutionary change in the craniofacial complex is an issue of long-standing interest in vertebrate evolution. To investigate brain-face integration, we studied the covariation between the forebrain and midface at gestational days 10-10.5 in four strains of laboratory mice.

View Article and Find Full Text PDF

Background: Growing demand for three dimensional (3D) digital images of embryos for purposes of phenotypic assessment drives implementation of new histological and imaging techniques. Among these micro-computed tomography (microCT) has recently been utilized as an effective and practical method for generating images at resolutions permitting 3D quantitative analysis of gross morphological attributes of developing tissues and organs in embryonic mice. However, histological processing in preparation for microCT scanning induces changes in organ size and shape.

View Article and Find Full Text PDF

Organisms represent a complex arrangement of anatomical structures and individuated parts that must maintain functional associations through development. This integration of variation between functionally related body parts and the modular organization of development are fundamental determinants of their evolvability. This is because integration results in the expression of coordinated variation that can create preferred directions for evolutionary change, while modularity enables variation in a group of traits or regions to accumulate without deleterious effects on other aspects of the organism.

View Article and Find Full Text PDF

Kashin-Beck disease, a syndrome characterized by short stature, skeletal deformities, and arthropathy of multiple joints, is highly prevalent in specific regions of Asia. The disease has been postulated to result from a combination of different environmental factors, including contamination of barley by mold mycotoxins, iodine deficiency, presence of humic substances in drinking water, and, importantly, deficiency of selenium. This multifunctional trace element, in the form of selenocysteine, is essential for normal selenoprotein function, including attenuation of excessive oxidative stress, and for the control of redox-sensitive molecules involved in cell growth and differentiation.

View Article and Find Full Text PDF

A new approach for the study of geometric morphometrics is presented based on well-established image processing techniques in a novel combination to support high-throughput analysis necessary for large-scale determination of genotype-phenotype relationships. The method retains full 3-D data, and avoids manual landmark selection. Micro-computed tomography images are superimposed into a common orientation by rigid image registration with an isotropic scale factor.

View Article and Find Full Text PDF

The hypothesis that variation in craniofacial shape within and among species is influenced by spatial packing has a long history in comparative anatomy, particularly in terms of primates. This study develops and tests three alternative models of spatial packing to address how and to what extent the cranial base angle is influenced by variation in brain and facial size. The models are tested using mouse strains with different mutations affecting craniofacial growth.

View Article and Find Full Text PDF

Cleft lip and palate (CL/P), as is true of many craniofacial malformations in humans, is etiologically complex and highly variable in expression. A/WySn mice are an intriguing model for human CL/P because they develop this dysmorphology with a variable expression pattern, incomplete penetrance and frequent unilateral expression on a homogeneous genetic background. The developmental basis for this variation in expression is unknown, but of great significance for understanding such expression patterns in humans.

View Article and Find Full Text PDF

The skull is a developmentally complex and highly integrated structure. Integration, which is manifested as covariance among structures, enables the skull and associated soft tissues to maintain function both across ontogeny within individuals and across the ranges of size and shape variation among individuals. Integration also contributes to evolvability by structuring the phenotypic expression of genetic variation.

View Article and Find Full Text PDF

Research conducted under the label of evolutionary developmental biology has tended to revolve around a few central issues such as modularity, integration, and canalization. Yet, as the field has grown, it has become increasingly difficult to define in terms of its central question and relation to broader evolutionary concerns. We argue that these central issues of evo-devo gain their currency from connections to a central question that defines the field, and we propose that this central question is about the nature of evolvability.

View Article and Find Full Text PDF

Down syndrome (DS) is caused by trisomy of human chromosome 21 (Hsa21) and results in a suite of dysmorphic phenotypes, including effects on the postcranial skeleton and the skull. We have previously demonstrated parallels in the patterns of craniofacial dysmorphology in DS and in the Ts65Dn mouse model for DS. The specific mechanisms underlying the production of these changes in craniofacial shape remain unknown.

View Article and Find Full Text PDF