Publications by authors named "Tripp-Valdez M"

Understanding the molecular mechanisms underlying thermal acclimation and heat shock responses in marine ectotherms is critical for assessing their adaptive capacity in the context of climate change and climate extremes. This study examines the expression dynamics of heat shock proteins (HSPs) in the scallop Nodipecten subnodosus, shedding light on their role in thermal adaptation. Our analysis revealed the presence of several conserved functional signatures in N.

View Article and Find Full Text PDF

High temperature increases energy demand in ectotherms, limiting their physiological capability to cope with hypoxic events. The present study aimed to assess the metabolic tolerance of juvenile Nodipecten subnodosus scallops to acute hyperthermia combined with moderate hypoxia. A previous study showed that juveniles exhibited a high upper temperature limit (32 °C), but the responses of juveniles to combined hyperthermia and low dissolved oxygen are unknown.

View Article and Find Full Text PDF

Hippocampus erectus inhabiting the shallow coastal waters of the southern Gulf of Mexico are naturally exposed to marked temperature variations occurring in different temporal scales. Under such heterogeneous conditions, a series of physiological and biochemical adjustments take place to restore and maintain homeostasis. This study investigated the molecular mechanisms involved in the response of H.

View Article and Find Full Text PDF

Crassostrea virginica was exposed to different light crude oil levels to assess the effect on transcriptomic response and metabolic rate. The exposure time was 21 days, and levels of 100 and 200 μg/L were used, including a control. The most significant difference among treatments was the overexpression of several genes associated with energy production, reactive oxygen species (ROS) regulation, immune system response, and inflammatory response.

View Article and Find Full Text PDF

Along the Pacific coast of the Baja California Peninsula (Mexico), abalone represents one of the most lucrative fisheries. As wild populations are currently depleted, abalone farm production aims to balance the decreasing populations with the increasing demand. The Mexican abalone aquaculture is almost entirely based on red abalone (Haliotis rufescens).

View Article and Find Full Text PDF

Transcriptional regulation constitutes a rapid response of marine organisms facing stressful environmental conditions, such as the concomitant exposure to warming, ocean acidification and hypoxia under climate change. In previous studies, we investigated whole-organism physiological patterns and cellular metabolism in gill and muscle of the marine gastropod Haliotis fulgens in response to increasing temperature (18 °C to 32 °C at +3 °C per day) under hypoxia (50% air saturation), hypercapnia (1000 μatm pCO) and both factors combined. Here, we report investigations of the molecular responses of H.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how the combined effects of ocean warming, low oxygen (hypoxia), and high carbon dioxide (hypercapnia) impact the foot muscle cell physiology of juvenile green abalone under heat stress.
  • Exposure to hypoxia or hypercapnia influenced muscle enzyme activities differently during warming, with some anaerobic enzymes increasing under hypoxia, suggesting changes in energy production methods.
  • Despite some metabolic adjustments, the abalone experienced functional loss, indicating that while metabolic depression allowed for aerobic energy production, it may not be sufficient to prevent damage under compounded stressors.
View Article and Find Full Text PDF