Publications by authors named "Trionfini P"

Induced pluripotent stem cells (iPSC) have huge potential as cell therapy for various diseases, given their potential for unlimited self-renewal and capability to differentiate into a wide range of cell types. Although autologous iPSCs represents the ideal source for patient-tailored regenerative medicine, the high costs of the extensive and time-consuming production process and the impracticability for treating acute conditions hinder their use for broad applications. An allogeneic iPSC-based strategy may overcome these issues, but it carries the risk of triggering an immune response.

View Article and Find Full Text PDF

We examined the immune response in subjects previously infected with SARS-CoV2 and infection-naïve 9 months after primary 2-dose COVID-19 mRNA vaccination and 3 months after the booster dose in a longitudinal cohort of healthcare workers. Nine months after primary vaccination, previously infected subjects exhibited higher residual antibody levels, with significant neutralizing activity against distinct variants compared to infection-naïve subjects. The higher humoral response was associated with higher levels of receptor binding domain (RBD)-specific IgG and IgA memory B cells.

View Article and Find Full Text PDF

No effective treatments are available for familial steroid-resistant Focal Segmental Glomerulosclerosis (FSGS), characterized by proteinuria due to ultrastructural abnormalities in glomerular podocytes. Here, we studied a private PAX2 mutation identified in a patient who developed FSGS in adulthood. By generating adult podocytes using patient-specific induced pluripotent stem cells (iPSC), we developed an in vitro model to dissect the role of this mutation in the onset of FSGS.

View Article and Find Full Text PDF

Abnormal kidney development leads to lower nephron number, predisposing to renal diseases in adulthood. In embryonic kidneys, nephron endowment is dictated by the availability of nephron progenitors, whose self-renewal and differentiation require a relatively repressed chromatin state. More recently, NAD-dependent deacetylase sirtuins (SIRTs) have emerged as possible regulators that link epigenetic processes to the metabolism.

View Article and Find Full Text PDF

Human induced pluripotent stem cells (iPSCs) have great promise in regenerative medicine. However, several limitations, including immune-incompatibility, have raised concerns regarding their clinical application. Recent studies have shown that human iPSCs and their derivatives lose their immunogenicity when major histocompatibility complex (MHC) class I and II genes are inactivated and CD47 is over-expressed.

View Article and Find Full Text PDF

Autosomal dominant polycystic kidney disease (ADPKD) is the most common hereditary kidney disease, characterised by the development of multiple fluid-filled cysts in the kidneys and other organs. PKD1 and PKD2 are the two major causative genes encoding for polycystin-1 and polycystin-2, respectively. Here, we report the generation of two isogenic induced pluripotent stem cell (iPSC) lines with either heterozygous or compound heterozygous mutations in the PKD1 gene using CRISPR-Cas9 technology.

View Article and Find Full Text PDF

Autosomal dominant polycystic kidney disease (ADPKD) is the most prevalent inherited renal disease, characterized by multiple cysts that can lead to kidney failure resulting in end-stage renal disease. ADPKD is mainly caused by mutations in either the PKD1 and PKD2 genes, encoding for polycystin-1 and polycystin-2, respectively. In order to clarify the disease mechanisms, here we describe the generation of two isogenic induced pluripotent stem cell (iPSC) lines in which the PKD2 gene was deleted using CRISPR/Cas9 technology.

View Article and Find Full Text PDF

Sirtuins, a family of NAD-dependent deacetylases, are recognized as nondispensable regulators of aging processes. Sirtuin 3 (SIRT3) is the main mitochondrial deacetylase that maintains mitochondrial bioenergetics, an essential prerequisite for healthy aging. In this study, using knockout () mice, we sought to establish whether deficiency affected life span, an endpoint that has never been tested formally in mammals, and uncover the mechanisms involved in organ damage associated with aging.

View Article and Find Full Text PDF

Focal segmental glomerulosclerosis (FSGS) is defined by focal (involving few glomeruli) and segmental sclerosis of the glomerular tuft that manifests with nephrotic syndrome. Mutations in genes involved in the maintenance of structure and function of podocytes have been found in a minority of these patients. A family with adult-onset autosomal dominant FSGS was recently found to carry a new germline missense heterozygous mutation (p.

View Article and Find Full Text PDF

Aims/hypothesis: Renal fibrosis is a common complication of diabetic nephropathy and is a major cause of end-stage renal disease. Despite the suggested link between renal fibrosis and microRNA (miRNA) dysregulation in diabetic nephropathy, the identification of the specific miRNAs involved is still incomplete. The aim of this study was to investigate miRNA profiles in the diabetic kidney and to identify potential downstream targets implicated in renal fibrosis.

View Article and Find Full Text PDF

Ex vivo gene transfer to the graft before transplantation is an attractive option for circumventing systemic side effects of chronic antirejection therapy. Gene delivery of the immunomodulatory protein cytotoxic T-lymphocyte-associated protein 4-immunoglobulin (CTLA4-Ig) prevented chronic kidney rejection in a rat model of allotransplantation without the need for systemic immunosuppression. Here we generated adeno-associated virus type 2 (AAV2) and AAV9 vectors encoding for LEA29Y, an optimized version of CTLA4-Ig.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are important regulators of gene expression, and the dysregulation of miRNAs is a common feature of several diseases. More miRNAs are identified almost daily, revealing the complexity of these transcripts in eukaryotic cellular networks. The study of renal miRNAs, using genetically modified mice or by perturbing endogenous miRNA levels, has revealed the important biologic roles miRNAs have in the major cell lineages that compose the glomerulus.

View Article and Find Full Text PDF

MicroRNAs (miRNAs) are small non-coding RNA molecules that regulate gene expression. They have important roles during kidney development, homeostasis and disease. In particular, miRNAs participate in the onset and progression of tubulointerstitial sclerosis and end-stage glomerular lesions that occur in various forms of chronic kidney disease (CKD).

View Article and Find Full Text PDF

The contribution of microRNA (miRNA) to the pathogenesis of renal fibrosis is not well understood. Here, we investigated whether miRNA modulates the fibrotic process in Munich Wistar Fromter (MWF) rats, which develop spontaneous progressive nephropathy. We analyzed the expression profile of miRNA in microdissected glomeruli and found that miR-324-3p was the most upregulated.

View Article and Find Full Text PDF

Members of the TLR/IL-1R superfamily mediate ischemia/reperfusion injury and initiate immune response in transplanted organs. In this study, we tested the hypothesis that Toll-IL-1R8 (TIR8), a negative regulator of TLR/IL-1R highly expressed in the kidney, modulates immune cell activation underlying kidney rejection. In a mouse model of fully mismatched kidney allotransplantation in which the graft is spontaneously accepted, intragraft Tir8 expression was enhanced compared with naive kidneys.

View Article and Find Full Text PDF

ADAMTS13 is a plasma metalloprotease that regulates the size of the von Willebrand factor (VWF) multimers. Genetic or acquired deficiency of ADAMTS13 causes thrombotic thrombocytopenic purpura (TTP) in humans. Plasma infusion is the treatment of choice for patients with congenital ADAMTS13 deficiency.

View Article and Find Full Text PDF

Rap1b and Rap2b are the only members of the Rap family of GTPases expressed in circulating human platelets. Rap1b is involved in the inside-out activation of integrins, while the role of Rap2b is still poorly understood. In this work, we investigated the localization of Rap proteins to specific microdomains of plasma membrane called lipid rafts, implicated in signal transduction.

View Article and Find Full Text PDF

The Rap family of small GTP-binding proteins is composed by four different members: Rap1A, Rap1B, Rap2A and Rap2B. In this work we report the identification and characterization of a fifth member of this family of small GTPases. This new protein is highly homologous to Rap2A and Rap2B, binds labeled GTP on nitrocellulose, and is recognized by a specific anti-Rap2 antibody, but not by an anti-Rap1 antibody.

View Article and Find Full Text PDF