Publications by authors named "Trinity L Hamilton"

Snow algal blooms decrease snow albedo and increase local melt rates. However, the causes behind the size and frequency of these blooms are still not well understood. One factor likely contributing is nutrient availability, specifically nitrogen and phosphorus.

View Article and Find Full Text PDF

Cyanobacteria are important targets for biotechnological applications due to their ability to grow in a wide variety of environments, rapid growth rates, and tractable genetic systems. They and their bioproducts can be used as bioplastics, biofertilizers, and in carbon capture and produce important secondary metabolites that can be used as pharmaceuticals. However, the photosynthetic process in cyanobacteria can be limited by a wide variety of environmental factors such as light intensity and wavelength, exposure to UV light, nutrient limitation, temperature, and salinity.

View Article and Find Full Text PDF

Supraglacial pools are prevalent on debris-covered mountain glaciers, yet only limited information is available on the microbial communities within these habitats. Our research questions for this preliminary study were: (1) What microbes occur in supraglacial pool sediments of monsoonal Tibet?; (2) Which abiotic and biotic habitat variables have the most influence on the microbial community structure?; and (3) Does microbial composition of supraglacial pool sediments differ from that of glacial-melt stream pool sediments? We collected microbial samples for 16S rRNA sequencing and invertebrates for enumeration and identification and measured 14 abiotic variables from 46 supraglacial pools and nine glacial-melt stream pools in 2018 and 2019. Generalized linear model analyses, small sample Akaike information criterion, and variable importance scores were used to identify the best predictor variables of microbial community structure.

View Article and Find Full Text PDF

Chlainomonas (Chlamydomonadales, Chlorophyta) is one of the four genera of snow algae known to produce annual pink or red blooms in alpine snow. No Chlainomonas species have been successfully cultured in the laboratory, but diverse cell types have been observed from many field-collected samples, from multiple species. The diversity of morphologies suggests these algae have complex life cycles with changes in ploidy.

View Article and Find Full Text PDF

For millennia, healing and psychoactive plants have been part of the medicinal and ceremonial fabric of elaborate rituals and everyday religious practices throughout Mesoamerica. Despite the essential nature of these ritual practices to the societal framework of past cultures, a clear understanding of the ceremonial life of the ancient Maya remains stubbornly elusive. Here we record the discovery of a special ritual deposit, likely wrapped in a bundle, located beneath the end field of a Late Preclassic ballcourt in the Helena complex of the Maya city of Yaxnohcah.

View Article and Find Full Text PDF

Snow is a critical component of the Earth system. High-elevation snow can persist into the spring, summer, and early fall and hosts a diverse array of life, including snow algae. Due in part to the presence of pigments, snow algae lower albedo and accelerate snow melt, which has led to increasing interest in identifying and quantifying the environmental factors that constrain their distribution.

View Article and Find Full Text PDF

Active hot springs are dynamic geobiologically active environments. Heat- and element-enriched fluids form hot spring sinter deposits that are inhabited by microbial and macroscopic eukaryotic communities, but it is unclear how variable heat, fluid circulation, and mineralization within hot spring systems affect the preservation of organic matter in sinters. We present geological, petrographic, and organic geochemical data from fossilized hot spring sinters (<13 Ka) from three distinct hot spring fields of Yellowstone National Park.

View Article and Find Full Text PDF
Article Synopsis
  • Glaciers are melting rapidly due to climate change, which affects global sea levels, carbon cycles, and water resources, and hosts diverse microbial communities that impact snow reflectivity and contribute to feedback loops in melting.
  • A study on Paradise Glacier characterized the changes in bacterial, eukaryotic, and algal communities over the summer melt season, showing constant bacterial presence but significant changes in eukaryotes and algae.
  • The research underscores the importance of ongoing sampling to better understand microbial diversity in glaciers, cautioning against conclusions drawn from limited data.
View Article and Find Full Text PDF

Thermophilic cyanobacteria have been extensively studied in Yellowstone National Park (YNP) hot springs, particularly during decades of work on the thick laminated mats of Octopus and Mushroom springs. However, focused studies of cyanobacteria outside these two hot springs have been lacking, especially regarding how physical and chemical parameters along with community morphology influence the genomic makeup of these organisms. Here, we used a metagenomic approach to examine cyanobacteria existing at the upper temperature limit of photosynthesis.

View Article and Find Full Text PDF

Alkaline hot springs in Yellowstone National Park (YNP) provide a framework to study the relationship between photoautotrophs and temperature. Previous work has focused on studying how cyanobacteria (oxygenic phototrophs) vary with temperature, sulfide, and pH, but many questions remain regarding the ecophysiology of anoxygenic photosynthesis due to the taxonomic and metabolic diversity of these taxa. To this end, we examined the distribution of genes involved in phototrophy, carbon fixation, and nitrogen fixation in eight alkaline (pH 7.

View Article and Find Full Text PDF

The microbial communities of lake sediments have the potential to serve as valuable bioindicators and integrators of watershed land-use and water quality; however, the relative sensitivity of these communities to physio-chemical and geographical parameters must be demonstrated at taxonomic resolutions that are feasible by current sequencing and bioinformatic approaches. The geologically diverse and lake-rich state of Minnesota (USA) is uniquely situated to address this potential because of its variability in ecological region, lake type, and watershed land-use. In this study, we selected twenty lakes with varying physio-chemical properties across four ecological regions of Minnesota.

View Article and Find Full Text PDF

Geographic isolation can be a main driver of microbial evolution in hot springs while temperature plays a role on local scales. For example, cyanobacteria, particularly high-temperature spp., have undergone ecological diversification along temperature gradients in hot spring outflow channels.

View Article and Find Full Text PDF

Hydrothermal systems host microbial communities that include some of the most deeply branching members of the tree of life, and recent work has suggested that terrestrial hot springs may have provided ideal conditions for the origin of life. Hydrothermal microbial communities are a potential source for biosignatures, and the presence of terrestrial hot spring deposits in 3.48 Ga rocks as well as on the surface of Mars lends weight to a need to better understand the preservation of biosignatures in these systems.

View Article and Find Full Text PDF

Acid mine drainage (AMD) is a global problem in which iron sulfide minerals oxidize and generate acidic, metal-rich water. Bioremediation relies on understanding how microbial communities inhabiting an AMD site contribute to biogeochemical cycling. A number of studies have reported community composition in AMD sites from 16S rRNA gene amplicons, but it remains difficult to link taxa to function, especially in the absence of closely related cultured species or those with published genomes.

View Article and Find Full Text PDF

Tikal, a major city of the ancient Maya world, has been the focus of archaeological research for over a century, yet the interactions between the Maya and the surrounding Neotropical forests remain largely enigmatic. This study aimed to help fill that void by using a powerful new technology, environmental DNA analysis, that enabled us to characterize the site core vegetation growing in association with the artificial reservoirs that provided the city water supply. Because the area has no permanent water sources, such as lakes or rivers, these reservoirs were key to the survival of the city, especially during the population expansion of the Classic period (250-850 CE).

View Article and Find Full Text PDF

JAD2, the only cultured representative of the order , is abundant in Great Boiling Spring (GBS), NV, United States, and close relatives inhabit geothermal systems globally. However, no defined medium exists for JAD2 and no single carbon source is known to support its growth, leaving key knowledge gaps in its metabolism and nutritional needs. Here, we report comparative genomic analysis of the draft genome of JAD2 and eight closely related metagenome-assembled genomes (MAGs) from geothermal sites in China, Japan, and the United States, representing " Thermoflexus japonica," " Thermoflexus tengchongensis," and " Thermoflexus sinensis.

View Article and Find Full Text PDF

Freshwater reservoirs are an important source of the greenhouse gas methane (CH) to the atmosphere, but global emission estimates are poorly constrained (13.3-52.5 Tg C yr), partially due to extreme spatial variability in emission rates within and among reservoirs.

View Article and Find Full Text PDF

Photosynthetic bacteria are abundant in alkaline, terrestrial hot springs and there is a long history of research on phototrophs in Yellowstone National Park (YNP). Hot springs provide a framework to examine the ecophysiology of phototrophs in situ because they provide natural gradients of geochemistry, pH and temperature. Phototrophs within the Cyanobacteria and Chloroflexi groups are frequently observed in alkaline hot springs.

View Article and Find Full Text PDF

Understanding civilizations of the past and how they emerge and eventually falter is a primary research focus of archaeological investigations because these provocative data sets offer critical insights into long-term human behavior patterns, especially in regard to land use practices and sustainable environmental interactions. The ancient Maya serve as an intriguing example of this research focus, yet the details of their spectacular emergence in a tropical forest environment followed by their eventual demise have remained enigmatic. Tikal, one of the foremost of the ancient Maya cities, plays a central role in this discussion because of its sharp population decline followed by abandonment during the late 9 century CE.

View Article and Find Full Text PDF

Background: Ferrovum spp. are abundant in acid mine drainage sites globally where they play an important role in biogeochemical cycling. All known taxa in this genus are Fe(II) oxidizers.

View Article and Find Full Text PDF

Uncovering and understanding the chemical and fossil record of ancient life is crucial to understanding how life arose, evolved, and distributed itself across Earth. Potential signs of ancient life, however, are often challenging to establish as definitively biological and require multiple lines of evidence. Hydrothermal silica deposits may preserve some of the most ancient evidence of life on Earth, and such deposits are also suggested to exist on the surface of Mars.

View Article and Find Full Text PDF

Extant anoxygenic phototrophs are taxonomically, physiologically, and metabolically diverse and include examples from all seven bacterial phyla with characterized phototrophic members. pH, temperature, and sulfide are known to constrain phototrophs, but how these factors dictate the distribution and activity of specific taxa of anoxygenic phototrophs has not been reported. Here, we hypothesized that within the known limits of pH, temperature, and sulfide, the distribution, abundance, and activity of specific anoxygenic phototrophic taxa would vary due to key differences in the physiology of these organisms.

View Article and Find Full Text PDF

The vertical transmission of microbes from mother to offspring is critical to the survival, development, and health of animals. Invertebrate systems offer unique opportunities to conduct studies on microbiome-development-reproduction dynamics since reproductive modes ranging from oviparity to multiple types of viviparity are found in these animals. One such invertebrate is the live-bearing cockroach, .

View Article and Find Full Text PDF

Terrestrial hot springs have provided a niche space for microbial communities throughout much of Earth's history, and evidence for hydrothermal deposits on the Martian surface suggest this could have also been the case for the red planet. Prior to the evolution of photosynthesis, life in hot springs on early Earth would have been supported though chemoautotrophy. Today, hot spring geochemical and physical parameters can preclude the occurrence of oxygenic phototrophs, providing an opportunity to characterize the geochemical and microbial components.

View Article and Find Full Text PDF

The ability to harvest light to drive chemical reactions and gain energy provided microbes access to high energy electron donors which fueled primary productivity, biogeochemical cycles, and microbial evolution. Oxygenic photosynthesis is often cited as the most important microbial innovation-the emergence of oxygen-evolving photosynthesis, aided by geologic events, is credited with tipping the scale from a reducing early Earth to an oxygenated world that eventually lead to complex life. Anoxygenic photosynthesis predates oxygen-evolving photosynthesis and played a key role in developing and fine-tuning the photosystem architecture of modern oxygenic phototrophs.

View Article and Find Full Text PDF