Background And Purpose: The objective of this work is to evaluate the risk of carcinogenesis of low dose ionizing radiation therapy (LDRT), for treatment of immune-related pneumonia following COVID-19 infection, through the estimation of effective dose and the lifetime attributable risk of cancer (LAR).
Material And Methods: LDRT treatment was planned in male and female computational phantoms. Equivalent doses in organs were estimated using both treatment planning system calculations and a peripheral dose model (based on ionization chamber measurements).
There is a growing interest in the use of flattening filter free (FFF) beams due to the shorter treatment times. The reduction of head scatter suggests a better radiation protection to radiotherapy patients, considering the expected decrease in peripheral surface dose (PSD). In this work, PSD of flattened (FF) and FFF-photon beams was compared.
View Article and Find Full Text PDFPurpose: Early stage breast cancers may not be visible on a whole-body PET scan. To overcome whole-body PET limitations, several dedicated breast positron emission tomography (DbPET) systems have emerged nowadays aiming to improve spatial resolution. In this work the authors evaluate the performance of a high resolution dedicated breast PET scanner (Mammi-PET, Oncovision).
View Article and Find Full Text PDFBackground: To make a radiobiological comparison, for high risk prostate cancer (T3a, PSA > 20 ng/ml or Gleason > 7) of two radiotherapy treatment techniques. One technique consists of a treatment in three phases of the pelvic nodes, vesicles and prostate using a conventional fractionation scheme of 2 Gy/fraction (SIMRT). The other technique consists of a treatment in two phases that gives simultaneously different dose levels in each phase, 2 Gy/fraction, 2.
View Article and Find Full Text PDF