Roundworm parasite infections are a major cause of human and livestock disease worldwide and a threat to global food security. Disease control currently relies on anthelmintic drugs to which roundworms are becoming increasingly resistant. An alternative approach is control by vaccination and 'hidden antigens', components of the worm gut not encountered by the infected host, have been exploited to produce Barbervax, the first commercial vaccine for a gut dwelling nematode of any host.
View Article and Find Full Text PDFThe Z-disk is a complex structure comprising some 40 proteins that are involved in the transmission of force developed during muscle contraction and in important signalling pathways that govern muscle homeostasis. In the Z-disk the ends of antiparallel thin filaments from adjacent sarcomeres are crosslinked by α-actinin. The structure of the Z-disk lattice varies greatly throughout the animal kingdom.
View Article and Find Full Text PDFIn this review we discuss the history and the current state of ideas related to the mechanism of size regulation of the thick (myosin) and thin (actin) filaments in vertebrate striated muscles. Various hypotheses have been considered during of more than half century of research, recently mostly involving titin and nebulin acting as templates or 'molecular rulers', terminating exact assembly. These two giant, single-polypeptide, filamentous proteins are bound in situ along the thick and thin filaments, respectively, with an almost perfect match in the respective lengths and structural periodicities.
View Article and Find Full Text PDFVacuolar H(+)-ATPases are multisubunit complexes that operate with rotary mechanics and are essential for membrane proton transport throughout eukaryotes. Here we report a ∼ 1 nm resolution reconstruction of a V-ATPase in a different conformational state from that previously reported for a lower-resolution yeast model. The stator network of the V-ATPase (and by implication that of other rotary ATPases) does not change conformation in different catalytic states, and hence must be relatively rigid.
View Article and Find Full Text PDFThe vacuolar ATPase (V-ATPase) is a 1MDa transmembrane proton pump that operates via a rotary mechanism fuelled by ATP. Essential for eukaryotic cell homeostasis, it plays central roles in bone remodeling and tumor invasiveness, making it a key therapeutic target. Its importance in arthropod physiology also makes it a promising pesticide target.
View Article and Find Full Text PDFMuscle contraction is regulated by troponin-tropomyosin, which blocks and unblocks myosin binding sites on actin. To elucidate this regulatory mechanism, the three-dimensional organization of troponin and tropomyosin on the thin filament must be determined. Although tropomyosin is well defined in electron microscopy helical reconstructions of thin filaments, troponin density is mostly lost.
View Article and Find Full Text PDFThe giant protein titin is the third most abundant protein of vertebrate striated muscle. The titin molecule is >1 μm long and spans half the sarcomere, from the Z-disk to the M-line, and has important roles in sarcomere assembly, elasticity and intracellular signaling. In the A-band of the sarcomere titin is attached to the thick filaments and mainly consists immunoglobulin-like and fibronectin type III-like domains.
View Article and Find Full Text PDFCordon-Bleu (Cobl) is a regulator of actin dynamics in neural development and ciliogenesis. Its function is associated with three adjacent actin binding WASP Homology 2 (WH2) domains. We showed that these WH2 repeats confer multifunctional regulation of actin dynamics, which makes Cobl a « dynamizer » of actin assembly, inducing fast turnover of actin filaments and oscillatory polymerization regime via nucleation, severing, and rapid depolymerization activities.
View Article and Find Full Text PDFThe V-ATPase is a membrane-bound protein complex which pumps protons across the membrane to generate a large proton motive force through the coupling of an ATP-driven 3-stroke rotary motor (V1) to a multistroke proton pump (Vo). This is done with near 100% efficiency, which is achieved in part by flexibility within the central rotor axle and stator connections, allowing the system to flex to minimise the free energy loss of conformational changes during catalysis. We have used electron microscopy to reveal distinctive bending along the V-ATPase complex, leading to angular displacement of the V1 domain relative to the Vo domain to a maximum of ~30°.
View Article and Find Full Text PDFThe vacuolar H(+)-ATPase (V-ATPase) is an ATP-driven proton pump essential to the function of eukaryotic cells. Its cytoplasmic V1 domain is an ATPase, normally coupled to membrane-bound proton pump Vo via a rotary mechanism. How these asymmetric motors are coupled remains poorly understood.
View Article and Find Full Text PDFSkeletal and cardiac muscles are remarkable biological machines that support and move our bodies and power the rhythmic work of our lungs and hearts. As well as producing active contractile force, muscles are also passively elastic, which is essential to their performance. The origins of both active contractile and passive elastic forces can be traced to the individual proteins that make up the highly ordered structure of muscle.
View Article and Find Full Text PDFSingle molecules of the giant protein titin extend across half of the muscle sarcomere, from the Z-line to the M-line, and have roles in muscle assembly and elasticity. In the A-band titin is attached to thick filaments and here the domain arrangement occurs in regular patterns of eleven called the large super-repeat. The large super-repeat itself occurs eleven times and forms nearly half the titin molecule.
View Article and Find Full Text PDFThe rotary ATPase family of membrane protein complexes may have only three members, but each one plays a fundamental role in biological energy conversion. The F₁F(o)-ATPase (F-ATPase) couples ATP synthesis to the electrochemical membrane potential in bacteria, mitochondria and chloroplasts, while the vacuolar H⁺-ATPase (V-ATPase) operates as an ATP-driven proton pump in eukaryotic membranes. In different species of archaea and bacteria, the A₁A(o)-ATPase (A-ATPase) can function as either an ATP synthase or an ion pump.
View Article and Find Full Text PDFWe have studied the shape of myosin VI, the actin minus-end directed motor, by negative stain and metal shadow electron microscopy. Single particle processing was used to make two-dimensional averages of the stain images, which greatly increases the clarity and allows detailed comparisons with crystal structures. A total of 169,964 particle images were obtained from two different constructs in six different states (four nucleotide states and with and without Ca(2+)).
View Article and Find Full Text PDFAn approach to automated acquisition of cryoEM image data from lacey carbon grids using the Leginon program is described. Automated liquid nitrogen top up of the specimen holder dewar was used as a step towards full automation, without operator intervention during the course of data collection. During cryoEM studies of actin labelled with myosin V, we have found it necessary to work with lacey grids rather than Quantifoil or C-flat grids due to interaction of myosin V with the support film.
View Article and Find Full Text PDFThe giant protein titin is thought to play major roles in the assembly and function of muscle sarcomeres. Structural details, such as widths of Z- and M-lines and periodicities in the thick filaments, correlate with the substructure in the respective regions of the titin molecule. Sarcomere rest length, its operating range of lengths, and passive elastic properties are also directly controlled by the properties of titin.
View Article and Find Full Text PDFTitin is a giant protein of striated muscle with important roles in the assembly, intracellular signalling and passive mechanical properties of sarcomeres. The molecule consists principally of approximately 300 immunoglobulin and fibronectin domains arranged in a chain more than 1 mum long. The isoform-dependent N-terminal part of the molecule forms an elastic connection between the end of the thick filament and the Z-line.
View Article and Find Full Text PDFUsing electron microscopy and image processing, we have observed myosin 5a modified with lever arms of different lengths (four, six, and eight calmodulin-binding IQ domains) and orientations walking along actin filaments. Step lengths were dependent on lever length: 8IQ > 6IQ > 4IQ, which is consistent with myosin 5a having evolved to walk straight along actin. Lead heads were mostly in the prepowerstroke state, tethered there by the trail head.
View Article and Find Full Text PDFWe have quantitated the degree of structural preservation in cryo-sections of a vitrified biological specimen. Previous studies have used sections of periodic specimens to assess the resolution present, but preservation before sectioning was not assessed and so the damage due particularly to cutting was not clear. In this study large single crystals of lysozyme were vitrified and from these X-ray diffraction patterns extending to better than 2.
View Article and Find Full Text PDFThe vacuolar H+-ATPase (V-ATPase) is an ATP-driven rotary molecular motor that is a transmembrane proton pump in all eukaryotic cells. Although its activity is fundamental to many physiological processes, our understanding of the structure and mechanism of the V-ATPase is poor. Using cryo-electron microscopy of the tobacco hornworm (Manduca sexta) enzyme, we have calculated the first 3D reconstruction of the intact pump in its native state.
View Article and Find Full Text PDFFerritin, the major iron storage protein, has dual functions; it sequesters redox activity of intracellular iron and facilitates iron turn-over. Here we present high angle annular dark field (HAADF) images from individual hepatic ferritin cores within tissue sections, these images were obtained using spherical aberration corrected scanning transmission electron microscopy (STEM) under controlled electron fluence. HAADF images of the cores suggest a cubic morphology and a polycrystalline (ferrihydrite) subunit structure that is not evident in equivalent bright field images.
View Article and Find Full Text PDFWe present experimental evidence that the effective medium approximation (EMA), [D. C. Morse, Phys.
View Article and Find Full Text PDF