Publications by authors named "Trinh Kieu Dinh"

Nitric oxide (NO), a pro-neurogenic and antineuroinflammatory gasotransmitter, features the potential to develop a translational medicine against neuropathological conditions. Despite the extensive efforts made on the controlled delivery of therapeutic NO, however, an orally active NO prodrug for a treatment of chronic neuropathy was not reported yet. Inspired by the natural dinitrosyl iron unit (DNIU) [Fe(NO)], in this study, a reversible and dynamic interaction between the biomimetic [(NO)Fe(μ-SCHCHOH)Fe(NO)] () and serum albumin (or gastrointestinal mucin) was explored to discover endogenous proteins as a vehicle for an oral delivery of NO to the brain after an oral administration of .

View Article and Find Full Text PDF

The CXC chemokine receptor type 4 (CXCR4) receptor and its ligand, CXCL12, are overexpressed in various cancers and mediate tumor progression and hypoxia-mediated resistance to cancer therapy. While CXCR4 antagonists have potential anticancer effects when combined with conventional anticancer drugs, their poor potency against CXCL12/CXCR4 downstream signaling pathways and systemic toxicity had precluded clinical application. Herein, BPRCX807, known as a safe, selective, and potent CXCR4 antagonist, has been designed and experimentally realized.

View Article and Find Full Text PDF

Antiangiogenic therapy is widely administered in many cancers, and the antiangiogenic drug sorafenib offers moderate benefits in advanced hepatocellular carcinoma (HCC). However, antiangiogenic therapy can also lead to hypoxia-driven angiogenesis and immunosuppression in the tumor microenvironment (TME) and metastasis. Here, we report the synthesis and evaluation of NanoMnSor, a tumor-targeted, nanoparticle drug carrier that efficiently codelivers oxygen-generating MnO and sorafenib into HCC.

View Article and Find Full Text PDF

While immunotherapy holds great promise for combating cancer, the limited efficacy due to an immunosuppressive tumor microenvironment and systemic toxicity hinder the broader application of cancer immunotherapy. Here, we report a combinatorial immunotherapy approach that uses a highly efficient and tumor-selective gene carrier to improve anticancer efficacy and circumvent the systemic toxicity. In this study, we engineered tumor-targeted lipid-dendrimer-calcium-phosphate (TT-LDCP) nanoparticles (NPs) with thymine-functionalized dendrimers that exhibit not only enhanced gene delivery capacity but also immune adjuvant properties by activating the stimulator of interferon genes (STING)-cGAS pathway.

View Article and Find Full Text PDF