Publications by authors named "Trincot C"

Endothelial cells are the building blocks of the blood vascular system and exhibit well-characterized sexually dimorphic phenotypes with regard to chromosomal and hormonal sex, imparting innate genetic and physiological differences between male and female vascular systems and cardiovascular disease. However, even though females are predominantly affected by disorders of lymphatic vascular function, we lack a comprehensive understanding of the effects of sex and sex hormones on lymphatic growth, function, and dysfunction. Here, we attempt to comprehensively evaluate the current understanding of sex as a biological variable influencing lymphatic biology.

View Article and Find Full Text PDF

Rationale: Cardiac lymphangiogenesis contributes to the reparative process post-myocardial infarction, but the factors and mechanisms regulating it are not well understood.

Objective: To determine if epicardial-secreted factor AM (adrenomedullin; Adm=gene) improves cardiac lymphangiogenesis post-myocardial infarction via lateralization of Cx43 (connexin 43) in cardiac lymphatic vasculature.

Methods And Results: Firstly, we identified sex-dependent differences in cardiac lymphatic numbers in uninjured mice using light-sheet microscopy.

View Article and Find Full Text PDF

Adrenomedullin (AM) and proadrenomedullin N-terminal 20 peptide (PAMP) are small peptides derived from a common precursor, pre-proadrenomedullin. Although AM and PAMP share hypotensive effects in the cardiovascular system, the peptides also exert diverse and distinct effects on endocrine physiology, innate immunity, cytoskeletal biology and receptor signaling pathways. Tremendous knowledge has been gleaned from the study of several genetic animal models of AM deletion or overexpression, some of which also simultaneously delete the coding region for PAMP peptide.

View Article and Find Full Text PDF

RAMPs (receptor activity-modifying proteins) serve as oligomeric modulators for numerous G-protein-coupled receptors, yet elucidating the physiological relevance of these interactions remains complex. Ramp2 null mice are embryonic lethal, with cardiovascular developmental defects similar to those observed in mice null for canonical adrenomedullin/calcitonin receptor-like receptor signaling. We aimed to genetically rescue the Ramp2(-/-) lethality in order to further delineate the spatiotemporal requirements for RAMP2 function during development and thereby enable the elucidation of an expanded repertoire of RAMP2 functions with family B G-protein-coupled receptors in adult homeostasis.

View Article and Find Full Text PDF

During vertebrate blood vessel development, lumen formation is the critical process by which cords of endothelial cells transition into functional tubular vessels. Here, we use Xenopus embryos to explore the cellular and molecular mechanisms underlying lumen formation of the dorsal aorta and the posterior cardinal veins, the primary major vessels that arise via vasculogenesis within the first 48 hours of life. We demonstrate that endothelial cells are initially found in close association with one another through the formation of tight junctions expressing ZO-1.

View Article and Find Full Text PDF

Pathogenic mutations of MARVELD2, encoding tricellulin, a tricelluar tight junction protein, cause autosomal recessive non-syndromic hearing loss (DFNB49) in families of Pakistan and Czech Roma origin. In fact, they are a significant cause of prelingual hearing loss in the Czech Roma, second only to GJB2 variants. Previously, we reported that mice homozygous for p.

View Article and Find Full Text PDF

Many organisms have intimate associations with beneficial microbes acquired from the environment. These host-symbiont associations can be specific and stable, but they are prone to lower partner specificity and more partner-switching than vertically transmitted mutualisms. To investigate partner specificity in an environmentally acquired insect symbiosis, we used 16S rRNA gene and multilocus sequencing to survey the bacterial population in the bacteria-harbouring organ (crypts) of 49 individuals across four sympatric broad-headed bug species (Alydus calcaratus, A.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the role of tricellulin, a protein crucial for tight junctions in the cochlea, and its link to nonsyndromic hearing loss (DFNB49) through mutations in the TRIC gene.
  • Researchers created a mouse model with a mutation similar to that found in humans and observed that these mice experienced rapid hearing loss and damage to cochlear hair cells, despite certain inner ear functions remaining intact.
  • The findings suggest that the absence of tricellulin disrupts cell junctions, leading to changes in ion permeability and creating a harmful environment for hair cells, but this damage can be mitigated by altering endolymph production.
View Article and Find Full Text PDF