Publications by authors named "Triin Laos"

The current pandemic resulted in a rapidly increasing demand for personal protective equipment (PPE) initially leading to severe shortages of these items. Hence, during an unexpected and fast virus spread, the possibility of reusing highly efficient protective equipment could provide a viable solution for keeping both healthcare professionals and the general public equipped and protected. This requires an efficient decontamination technique that preserves functionality of the sensitive materials used for PPE production.

View Article and Find Full Text PDF

In animal cells, the functions of the microtubule cytoskeleton are coordinated by centriole-based centrosomes via γ-tubulin complexes embedded in the pericentriolar material or PCM. PCM assembly has been best studied in the context of mitosis, where centriolar SPD-2 recruits PLK-1, which in turn phosphorylates key scaffolding components like SPD-5 and CNN to promote expansion of the PCM polymer. To what extent these mechanisms apply to centrosomes in interphase or in differentiated cells remains unclear.

View Article and Find Full Text PDF

Centrosomes, the predominant sites of microtubule nucleation and anchorage, coordinate spindle assembly and cell division in animal cells. At the onset of mitosis, centrioles accumulate microtubule-organizing pericentriolar material (PCM) in a process termed centrosome maturation. To what extent centrosome maturation depends on the continued activity of mitotic regulators or the presence of centrioles has hitherto been unclear.

View Article and Find Full Text PDF

Meiotic chromosome movement is important for the pairwise alignment of homologous chromosomes, which is required for correct chromosome segregation. Movement is driven by cytoplasmic forces, transmitted to chromosome ends by nuclear membrane-spanning proteins. In animal cells, lamins form a prominent scaffold at the nuclear periphery, yet the role lamins play in meiotic chromosome movement is unclear.

View Article and Find Full Text PDF

Centrosomes are important regulators of microtubule organization in animal cells. Within the centrosome, microtubule nucleation and anchorage are mediated by proteins in the pericentriolar material (PCM) that accumulates around centrioles. The spatial organization of the PCM and the contribution of centrioles to its recruitment remain poorly understood.

View Article and Find Full Text PDF

We found that recircularized high-risk (type 16 and 18) and low-risk mucosal (type 6b and 11) and cutaneous (type 5 and 8) human papillomavirus (HPV) genomes replicate readily when delivered into U2OS cells by electroporation. The replication efficiency is dependent on the amount of input HPV DNA and can be followed for more than 3 weeks in proliferating cell culture without selection. Cotransfection of recircularized HPV genomes with a linear G418 resistance marker plasmid has allowed subcloning of cell lines, which, in a majority of cases, carry multicopy episomal HPV DNA.

View Article and Find Full Text PDF

In HPV-related cancers, the "high-risk" human papillomaviruses (HPVs) are frequently found integrated into the cellular genome. The integrated subgenomic HPV fragments express viral oncoproteins and carry an origin of DNA replication that is capable of initiating bidirectional DNA re-replication in the presence of HPV replication proteins E1 and E2, which ultimately leads to rearrangements within the locus of the integrated viral DNA. The current study indicates that the E1- and E2-dependent DNA replication from the integrated HPV origin follows the "onion skin"-type replication mode and generates a heterogeneous population of replication intermediates.

View Article and Find Full Text PDF