Publications by authors named "Trier Xenia"

Per- and polyfluoroalkyl substances (PFASs) are a class of synthetic organic chemicals of global concern. A group of 36 scientists and regulators from 18 countries held a hybrid workshop in 2022 in Zürich, Switzerland. The workshop, a sequel to a previous Zürich workshop held in 2017, deliberated on progress in the last five years and discussed further needs for cooperative scientific research and regulatory action on PFASs.

View Article and Find Full Text PDF

Background: The intersection of the topics of high-resolution mass spectrometry (HRMS) and per- and polyfluoroalkyl substances (PFAS) bring together two disparate and complex subjects. Recently non-targeted analysis (NTA) for the discovery of novel PFAS in environmental and biological media has been shown to be valuable in multiple applications. Classical targeted analysis for PFAS using LC-MS/MS, though growing in compound coverage, is still unable to inform a holistic understanding of the PFAS burden in most samples.

View Article and Find Full Text PDF

Per- and polyfluoroalkyl substances (PFASs) were one of the priority substance groups selected which have been investigated under the ambitious European Joint programme HBM4EU (2017-2022). In order to answer policy relevant questions concerning exposure and health effects of PFASs in Europe several activities were developed under HBM4EU namely i) synthesis of HBM data generated in Europe prior to HBM4EU by developing new platforms, ii) development of a Quality Assurance/Quality Control Program covering 12 biomarkers of PFASs, iii) aligned and harmonized human biomonitoring studies of PFASs. In addition, some cohort studies (on mother-child exposure, occupational exposure to hexavalent chromium) were initiated, and literature researches on risk assessment of mixtures of PFAS, health effects and effect biomarkers were performed.

View Article and Find Full Text PDF

Human biomonitoring (HBM) is a crucial approach for exposure assessment, as emphasised in the European Commission's Chemicals Strategy for Sustainability (CSS). HBM can help to improve chemical policies in five major key areas: (1) assessing internal and aggregate exposure in different target populations; 2) assessing exposure to chemicals across life stages; (3) assessing combined exposure to multiple chemicals (mixtures); (4) bridging regulatory silos on aggregate exposure; and (5) enhancing the effectiveness of risk management measures. In this strategy paper we propose a vision and a strategy for the use of HBM in chemical regulations and public health policy in Europe and beyond.

View Article and Find Full Text PDF

Management of datasets that include health information and other sensitive personal information of European study participants has to be compliant with the General Data Protection Regulation (GDPR, Regulation (EU) 2016/679). Within scientific research, the widely subscribed'FAIR' data principles should apply, meaning that research data should be findable, accessible, interoperable and re-usable. Balancing the aim of open science driven FAIR data management with GDPR compliant personal data protection safeguards is now a common challenge for many research projects dealing with (sensitive) personal data.

View Article and Find Full Text PDF

Per- and polyfluoroalkyl substances (PFAS) are a class of substances for which there are widespread concerns about their extreme persistence in combination with toxic effects. It has been argued that PFAS should only be employed in those uses that are necessary for health or safety or are critical for the functioning of society and where no alternatives are available ("essential-use concept"). Implementing the essential-use concept requires a sufficient understanding of the current uses of PFAS and of the availability, suitability, and hazardous properties of alternatives.

View Article and Find Full Text PDF

Despite decades of research on per- and polyfluoroalkyl substances (PFAS), fundamental obstacles remain to addressing worldwide contamination by these chemicals and their associated impacts on environmental quality and health. Here, we propose six urgent questions relevant to science, technology, and policy that must be tackled to address the "PFAS problem": (1) What are the global production volumes of PFAS, and where are PFAS used? (2) Where are the unknown PFAS hotspots in the environment? (3) How can we make measuring PFAS globally accessible? (4) How can we safely manage PFAS-containing waste? (5) How do we understand and describe the health effects of PFAS exposure? (6) Who pays the costs of PFAS contamination? The importance of each question and barriers to progress are briefly described, and several potential paths forward are proposed. Given the diversity of PFAS and their uses, the extreme persistence of most PFAS, the striking ongoing lack of fundamental information, and the inequity of the health and environmental impacts from PFAS contamination, there is a need for scientific and regulatory communities to work together, with cooperation from PFAS-related industries, to fill in critical data gaps and protect human health and the environment.

View Article and Find Full Text PDF

This commentary presents a scientific basis for managing as one chemical class the thousands of chemicals known as PFAS (per- and polyfluoroalkyl substances). The class includes perfluoroalkyl acids, perfluoroalkylether acids, and their precursors; fluoropolymers and perfluoropolyethers; and other PFAS. The basis for the class approach is presented in relation to their physicochemical, environmental, and toxicological properties.

View Article and Find Full Text PDF
Article Synopsis
  • The essential-use concept helps to phase out harmful substances like PFAS by evaluating whether their use is truly necessary.
  • To determine essentiality, three key factors are considered: the chemical's function, its necessity for health and safety, and the availability of alternatives.
  • This approach shifts chemicals management from addressing substances individually to assessing groups of chemicals, making it a faster and more effective method for regulation and elimination.
View Article and Find Full Text PDF

Per- and polyfluoroalkyl substances (PFAS) are of concern because of their high persistence (or that of their degradation products) and their impacts on human and environmental health that are known or can be deduced from some well-studied PFAS. Currently, many different PFAS (on the order of several thousands) are used in a wide range of applications, and there is no comprehensive source of information on the many individual substances and their functions in different applications. Here we provide a broad overview of many use categories where PFAS have been employed and for which function; we also specify which PFAS have been used and discuss the magnitude of the uses.

View Article and Find Full Text PDF
Article Synopsis
  • Fluoropolymers, part of the PFAS group, have significant environmental and health concerns linked to their entire life cycle due to toxic processing aids and emissions during production.
  • Concerns arise from the adverse effects of various PFAS emitted during manufacturing, usage, and disposal, with limited recycling options for consumer products.
  • The analysis emphasizes that fluoropolymers pose a risk to human health and the environment, suggesting their production should be limited to essential applications only.
View Article and Find Full Text PDF

Because of the extreme persistence of per- and polyfluoroalkyl substances (PFASs) and their associated risks, the Madrid Statement argues for stopping their use where they are deemed not essential or when safer alternatives exist. To determine when uses of PFASs have an essential function in modern society, and when they do not, is not an easy task. Here, we: (1) develop the concept of "essential use" based on an existing approach described in the Montreal Protocol, (2) apply the concept to various uses of PFASs to determine the feasibility of elimination or substitution of PFASs in each use category, and (3) outline the challenges for phasing out uses of PFASs in society.

View Article and Find Full Text PDF

The European Union's 7th Environmental Action Programme (EAP) aims to assess and minimize environmental health risks from the use of hazardous chemicals by 2020. From this angle, policy questions like whether an implemented policy to reduce chemical exposure has had an effect over time, whether the health of people in specific regions or subpopulations is at risk, or whether the body burden of chemical substances (the internal exposure) varies with, for example, time, country, sex, age, or socio-economic status, need to be answered. Indicators can help to synthesize complex scientific information into a few key descriptors with the purpose of providing an answer to a non-expert audience.

View Article and Find Full Text PDF
Article Synopsis
  • PFASs are synthetic chemicals, with over 4,000 types identified, that have been widely used in various products but pose long-term environmental and health risks due to their persistence.
  • Some PFASs, like PFOA and PFOS, have been studied and regulated, but information on many others remains limited.
  • A workshop in November 2017 brought together over 50 international experts to address these issues, aiming to improve science-policy collaboration and create a plan for assessing and managing PFASs in the future.
View Article and Find Full Text PDF

Humans and wildlife are exposed to an intractably large number of different combinations of chemicals via food, water, air, consumer products, and other media and sources. This raises concerns about their impact on public and environmental health. The risk assessment of chemicals for regulatory purposes mainly relies on the assessment of individual chemicals.

View Article and Find Full Text PDF
Article Synopsis
  • Food contact articles (FCAs) are made from materials like plastics and metals, but there's a risk of chemicals migrating from these articles into food, raising safety concerns.
  • The review highlights weaknesses in current chemical risk assessments (RAs) for food contact materials (FCMs) in the US and Europe, particularly in addressing all substances involved in production and enforcement of safety standards.
  • The authors stress the need for stricter regulations on the types of chemicals used in FCAs and propose new assessment methods, especially for unknown substances formed during manufacturing.
View Article and Find Full Text PDF

Food contact materials (FCM) are any type of item intended to come into contact with foods and thus represent a potential source for human exposure to chemicals. Regarding FCMs made of paper and board, information pertaining to their chemical constituents and the potential impacts on human health remains scarce, which hampers safety evaluation. We describe an effect-directed strategy to identify and characterize emerging chemicals in paper and board FCMs.

View Article and Find Full Text PDF

Risk assessment of exposure to chemicals from food and other sources rely on quantitative information of the occurrence of these chemicals. As screening analysis is increasingly used, a strategy to semi-quantify unknown or untargeted analytes is required. A proof of concept strategy to semi-quantifying unknown substances in LC-MS was investigated by studying the responses of a chemically diverse marker set of 17 analytes using an experimental design study.

View Article and Find Full Text PDF

Due to large knowledge gaps in chemical composition and toxicological data for substances involved, paper and board food-contact materials (P&B FCM) have been emerging as a FCM type of particular concern for consumer safety. This study describes the development of a step-by-step strategy, including extraction, high-performance liquid chromatography (HPLC) fractionation, tentative identification of relevant substances and in vitro testing of selected tentatively identified substances. As a case study, we used two fractions from a recycled pizza box sample which exhibited aryl hydrocarbon receptor (AhR) activity.

View Article and Find Full Text PDF

High resolution mass spectrometry (HRMS) was successfully applied to elucidate the structure of a polyfluorinated polyether (PFPE)-based formulation. The mass spectrum generated from direct injection into the MS was examined by identifying the different repeating units manually and with the aid of an instrument data processor. Highly accurate mass spectral data enabled the calculation of higher-order mass defects.

View Article and Find Full Text PDF