Background: The effect of external lateral stabilization on medio-lateral gait stability has been investigated previously. However, existing lateral stabilization devices not only constrain lateral motions but also transverse and frontal pelvis rotations. This study aimed to investigate the effect of external lateral stabilization with and without constrained transverse pelvis rotation on mechanical and metabolic gait features.
View Article and Find Full Text PDFObjective: The energy cost of walking with a lower limb prosthesis is higher than able-bodied walking and depends on both cause and level of amputation. This increase might partly be related to problems with balance control. In this study we investigated to what extent energy cost can be reduced by providing support through a handrail or cane and how this depends on level and cause of amputation.
View Article and Find Full Text PDFBackground: Identifying features for gait classification is a formidable problem. The number of candidate measures is legion. This calls for proper, objective criteria when ranking their relevance.
View Article and Find Full Text PDFBackground: Balance control during walking has been shown to involve a metabolic cost in healthy subjects, but it is unclear how this cost changes as a function of postural threat. The aim of the present study was to determine the influence of postural threat on the energy cost of walking, as well as on concomitant changes in spatiotemporal gait parameters, muscle activity and perturbation responses. In addition, we examined if and how these effects are dependent on walking speed.
View Article and Find Full Text PDFHuman walking requires active neuromuscular control to ensure stability in the lateral direction, which inflicts a certain metabolic load. The magnitude of this metabolic load has previously been investigated by means of passive external lateral stabilization via spring-like cords. In the present study, we applied this method to test two hypotheses: (1) the effect of external stabilization on energy cost depends on the stiffness of the stabilizing springs, and (2) the energy cost for balance control, and consequently the effect of external stabilization on energy cost, depends on walking speed.
View Article and Find Full Text PDFArch Phys Med Rehabil
November 2013
Objective: To examine the influence of balance support on the energy cost of treadmill and overground walking in ambulatory patients with stroke.
Design: Cross-sectional.
Setting: Research laboratory at a rehabilitation center.
Besides cognitive decline, dementia is characterized by gait changes and increased fall risk, also in early stages of the disease. The aim of this study was to investigate differences in the relationship between executive function and gait variability and stability during single task and dual task walking in persons with and without dementia. The study sample consisted of three groups: fifteen dementia patients (aged 75-87), fourteen healthy elderly (aged 75-85), and twelve relatively younger elderly (aged 55-70).
View Article and Find Full Text PDF