Publications by authors named "Tridip Sardar"

It is well established that COVID-19 incidence data follows some power law growth pattern. Therefore, it is natural to believe that the COVID-19 transmission process follows some power law. However, we found no existing model on COVID-19 with a power law effect only in the disease transmission process.

View Article and Find Full Text PDF

Unlabelled: COVID-19 is a highly infectious disease, and in very recent times, it has shown a massive impact throughout the globe. Several countries faced the COVID-19 infection waves multiple times. These later waves are more aggressive than the first wave and drastically impact social and economic factors.

View Article and Find Full Text PDF

Several reports in India indicate hospitals and quarantined centers are COVID-19 hotspots. To study the transmission occurring from the hospitals and as well as from the community, we developed a mechanistic model with a lockdown effect. Using daily COVID-19 cases data from six states and overall India, we estimated several important parameters of our model.

View Article and Find Full Text PDF

We considered a non-linear predator-prey model with an Allee effect on both populations on a two spatial dimension reaction-diffusion setup. Special importance to predator mortality was given as it may be often controlled through human-made harvesting processes. The local dynamics of the model was studied through boundedness, equilibrium, and stability analysis.

View Article and Find Full Text PDF

In the absence of neither an effective treatment or vaccine and with an incomplete understanding of the epidemiological cycle, Govt. has implemented a nationwide lockdown to reduce COVID-19 transmission in India. To study the effect of social distancing measure, we considered a new mathematical model on COVID-19 that incorporates lockdown effect.

View Article and Find Full Text PDF

Middle East Respiratory Syndrome Coronavirus (MERS-CoV) causes severe acute respiratory illness with a case fatality rate (CFR) of 35,5%. The highest number of MERS-CoV cases are from Saudi-Arabia, the major worldwide hotspot for this disease. In the absence of neither effective treatment nor a ready-to-use vaccine and with yet an incomplete understanding of its epidemiological cycle, prevention and containment measures can be derived from mathematical models of disease epidemiology.

View Article and Find Full Text PDF

A wide range of research has promised new tools for forecasting infectious disease dynamics, but little of that research is currently being applied in practice, because tools do not address key public health needs, do not produce probabilistic forecasts, have not been evaluated on external data, or do not provide sufficient forecast skill to be useful. We developed an open collaborative forecasting challenge to assess probabilistic forecasts for seasonal epidemics of dengue, a major global public health problem. Sixteen teams used a variety of methods and data to generate forecasts for 3 epidemiological targets (peak incidence, the week of the peak, and total incidence) over 8 dengue seasons in Iquitos, Peru and San Juan, Puerto Rico.

View Article and Find Full Text PDF

Dengue is one of the deadliest mosquito-borne disease prevalent mainly in tropical and sub-tropical regions. Controlling the spread of this disease becomes a major concern to the public health authority. World Health Organization (WHO) adopted several mosquito control strategies to reduce the disease prevalence.

View Article and Find Full Text PDF

In this manuscript, we propose and analyze a compartmental model of visceral leishmaniasis (VL). We model the human population with six compartments including asymptomatic, symptomatic and PKDL-infected, animal population as second host and sandfly population as the vector. Furthermore, the non-adult stage of the sandfly population is introduced in the system, which was not considered before in the literature.

View Article and Find Full Text PDF

In the last few years, fractional order derivatives have been used in epidemiology to capture the memory phenomena. However, these models do not have proper biological justification in most of the cases and lack a derivation from a stochastic process. In this present manuscript, using theory of a stochastic process, we derived a general time dependent single strain vector borne disease model.

View Article and Find Full Text PDF

Dengue is an endemic disease in the southeast Asian country Sri Lanka. Two seasonal peaks of dengue incidence were observed every year since 2002 onwards. In this study, we formulate a 2-strain dengue model for analyzing the monthly seasonal dengue incidence data from 2 provinces of Sri Lanka during the period April 2013 to September 2014.

View Article and Find Full Text PDF

In the present investigation, three mathematical models on a common single strain mosquito-transmitted diseases are considered. The first one is based on ordinary differential equations, and other two models are based on fractional order differential equations. The proposed models are validated using published monthly dengue incidence data from two provinces of Venezuela during the period 1999-2002.

View Article and Find Full Text PDF

Incidence of cholera outbreak is a serious issue in underdeveloped and developing countries. In Zimbabwe, after the massive outbreak in 2008-09, cholera cases and deaths are reported every year from some provinces. Substantial number of reported cholera cases in some provinces during and after the epidemic in 2008-09 indicates a plausible presence of seasonality in cholera incidence in those regions.

View Article and Find Full Text PDF