Publications by authors named "Tridib Samanta"

The protein extracted from the discarded eye lenses postcataract surgery, referred to as the cataractous eye protein isolate (CEPI), is employed as a polymer matrix for the construction of solid polymer electrolyte species (SPEs). SPEs are expected to be inexpensive, conductive, and mechanically stable in order to be economically and commercially viable. Environmentally, these materials should be biodegradable and nontoxic.

View Article and Find Full Text PDF

With an increasing bromide content in CsPb(Br/Cl) perovskite nanocrystals (PNCs), the steady state photoluminescence quantum yield value increases from 28% to 50% to 76%. Ultrafast transient absorption analyses reveal that the normalized band edge population increases more than two-fold on excitation at the band edge with increasing bromide content, and the hot exciton trapping time increases from 450 fs to 520 fs to 700 fs with increasing bromide content. Ultrasensitive single particle spectroscopic analyses reveal that the peak of the ON fraction distribution increases from 0.

View Article and Find Full Text PDF

There is no literature report of simultaneously achieving near-unity PLQY (ensemble level) and highly suppressed blinking (ultrasensitive single-particle spectroscopy (SPS) level) in a toxic-metal-free QD. In this Letter we report accomplishing near-unity PLQY (96%) and highly suppressed blinking (>80% ON fraction) in a toxic-metal-free CuInS/ZnSeS Core/Alloy-Shell (CAS) QD. In addition, (i) gigantic enhancement of PLQY (from 15% (Core) to 96% (CAS QD)), (ii) ultrahigh stability over 1 year without significant reduction of PLQY at the ensemble level, (iii) high magnitude (nearly 3 times) of electron detrapping/trapping rate, and (iv) very long ON duration (∼2 min) without blinking at the SPS level enable this ultrasmall (∼3.

View Article and Find Full Text PDF